

Chasing Nanoplastics by optical means

Luca Gavioli

Dept. of Mathematics and Physics & i-LAMP center

Università Cattolica del Sacro Cuore, via della Garzetta 48, 25131 Brescia
(Italy)

Abstract

The nanoplastics (NPs) harm to biological systems¹ is a growing threat², increasing with the NPs fragmentation (size $\leq 1 \mu\text{m}$) through photochemical and mechanical processes.³ Detection and characterization of NPs, in particular with optical means, is then a necessity, made challenging by the NPs by the lacking of the refractive index (RI) connection with the particle size and morphology. In this framework, nanometric polystyrene beads (PSbs) are a perfect benchmark system for new detection and characterization methods. However, the current tools to characterize PSbs, either destructive but morphology-aware, or non-destructive but morphology-blind,⁴⁻⁶ cannot robustly resolve the morphological complexity of PSbs in realistic, heterogeneous samples.

To bridge this gap, we link the optical scattering spectra to the morphological properties of PSbs by using monodispersed PSbs deposited on a sapphire (Al_2O_3) substrate via spin coating. The optical components (total transmission and reflection, diffuse transmission and reflection) are fitted with a new optical model based on the Mie theory. The model, accounting for the surface density and PSbs size distribution, provides and links the PSbs complex RI to the specific sample morphology, validated through atomic force microscopy (AFM). The model addresses the limitations in the existing inversion techniques by incorporating scattering and morphological effects, in particular in the 180-400 nm range. Furthermore, we show a connection among the aggregation morphologies and optical features for different PSbs sizes ($r=50-250\text{nm}$). Using a custom-developed automated AFM image analysis workflow, we quantified the number of PSbs, their size dispersion as well as their aggregation number. This allows to assign the specific features in the diffuse optical spectra to size or aggregation effects, and we validate the link by providing scattering simulations based on the discrete dipole approximation,⁷ incorporating both morphology and substrate interference effects.

M. Andrini, S. Federici, Luca Gavioli. **Refractive index of benchmark polystyrene nanoplastics by optical modelling of UV-VIS spectra.** *Anal. Chem.* **97**, 19419–19426 (2025)

References

- (1) Saraceni, P. R.; Miccoli, A.; Bada, A.; Taddei, A. R.; Mazzonna, M.; Fausto, A. M.; Scapigliati, G.; Picchietti, S. Polystyrene Nanoplastics as an Ecotoxicological Hazard: Cellular and Transcriptomic Evidences on Marine and Freshwater in Vitro Teleost Models. *Science of The Total Environment* **2024**, 934, 173159.
- (2) Schwarz, A. E.; Lighthart, T. N.; Boukris, E.; Van Harmelen, T. Sources, Transport, and Accumulation of Different Types of Plastic Litter in Aquatic Environments: A Review Study. *Marine Pollution Bulletin* **2019**, 143, 92–100.
- (3) Nwachukwu, O.; Kniazev, K.; Abarca Perez, A.; Kuno, M.; Doudrick, K. Single-Particle Analysis of the Photodegradation of Submicron Polystyrene Particles Using Infrared Photothermal Heterodyne Imaging. *Environ. Sci. Technol.* **2024**, 58 (2), 1312–1320.
- (4) Caputo, F.; Vogel, R.; Savage, J.; Vella, G.; Law, A.; Della Camera, G.; Hannon, G.; Peacock, B.; Mehn, D.; Ponti, J.; Geiss, O.; Aubert, D.; Prina-Mello, A.; Calzolai, L. Measuring Particle Size Distribution and Mass Concentration of Nanoplastics and Microplastics: Addressing Some Analytical Challenges in the Sub-Micron Size Range. *Journal of Colloid and Interface Science* **2021**, 588, 401–417.
- (5) Caldwell, J.; Taladriz-Blanco, P.; Lehner, R.; Lubskyy, A.; Ortuso, R. D.; Rothen-Rutishauser, B.; Petri-Fink, A. The Micro-, Submicron-, and Nanoplastic Hunt: A Review of Detection Methods for Plastic Particles. *Chemosphere* **2022**, 293, 133514. <https://doi.org/10.1016/j.chemosphere.2022.133514>.
- (6) Schwaferts, C.; Niessner, R.; Elsner, M.; Ivleva, N. P. Methods for the Analysis of Submicrometer- and Nanoplastic Particles in the Environment. *TrAC Trends in Analytical Chemistry* **2019**, 112, 52–65.

(7) Yurkin, M. A.; Hoekstra, A. G. The Discrete-Dipole-Approximation Code ADDA: Capabilities and Known Limitations. *Journal of Quantitative Spectroscopy and Radiative Transfer* **2011**, 112 (13), 2234–2247.