PHYSICS LABORATORY II A - LModule EXERCISES
Academic Year 2024/2025 - Teacher: Agatino MUSUMARRAExpected Learning Outcomes
The approach used in this Course is experimental/applied.
Learning objectives to this Course are:
• Understanding electromagnetic and optical phenomena from an experimental, practical perspective.
• Becoming skilled in assembling electric circuits, in building electric, magnetic and optical devices, and in performing measurements of physical quantities and technical specifications.
• Gaining basic knowledge about the working principles of instruments, mastering general methods and developing skills useful in investigating electromagnetic and optical phenomena not necessarily already presented in the Course.
• Gaining basic knowledge and developing skills useful in designing new devices in the concerned scientific field.
• Develop the ability to correctly analyze scientific data and to present an experiment in a good-quality scientific paper where the data are analyzed and results are presented and interpreted.
• Develop the ability to communicate the results of a scientific measurement or experiment in an exhaustive, clear, efficient and correct fashion.
In addition, in the frame of the so-called Dublin Descriptors, this Course helps attain the following crossdisciplinary competences:
Knowledge and understanding:
• Inductive and deductive reasoning.
• Ability to formalize the description of a natural phenomenon in terms of scalar and vector physical quantities.
• Ability to formulate a problem using suitable mathematical relationships (such as algebraic, integral or differential) among physical quantities, and then solve it by means of analytical or numerical methods.
• Ability to arrange and set up a simple experimental apparatus, and to use scientific instruments for thermal, mechanical and electromagnetic measurements.
• Ability to perform statistical analysis of data.
Applying knowledge and understanding:
• Ability to apply the gained knowledge in order to describe physical phenomena using rigorously the scientific method.
• Ability to design simple experiments and perform analysis of their experimental data in all domains of Physics including those with technological spinoff.
Making judgements:
• Developing critical thinking.
• Ability to find the best methods to critically analyze, elaborate and interpret experimental data.
• Ability to understand the predictions of a theory or model.
• Ability to evaluate accuracy of measurements, linearity of instrumental response, sensitivity and selectivity of employed techniques.
Communication skills:
• Ability to orally present, using fluent scientific language and appropriate scientific vocabulary, a scientific topic, including any underlying motivations and illustrating any results.
• Ability to report in writing, using fluent scientific language and appropriate scientific vocabulary, on a scientific topic, including any underlying motivations and illustrating any results.
Course Structure
This course alternates 3 cycles of lectures in the Classroom with 3 corresponding cycles of practical sessions in the Lab. The course begins with a first cycle of lectures in the Classroom, which is followed by a corresponding first cycle of practical sessions in the Lab. Then we continue with the second cycle of lectures in the Classroom, and so on.
The classroom lectures introduce the working principles of scientific instruments and present the experimental setups of some experiments aimed at illustrating electromagnetic and optical phenomena, at verifying natural laws, and at measuring physical properties in the same fields. Procedures to analyze and ways to present the data that will be collected in the Lab are specifically highlighted.
During the cycles of practical sessions in the Lab the students actually perform the experiments and make the measurements previously introduced by the Classroom lectures.
6 CFUs (corresponding to 7 hours each) are dedicated to lectures in the Classroom for a total of 42 hours, while 6 CFUs (corresponding to 15 hours each) are devoted to the practical sessions in the Lab with a total of 90 hours. Altogether, thus, this 12-CFU Course comprises 132 hours of teaching.
During the periods devoted to lectures in the Classroom there are no sessions in the Lab.
Should circumstances require the lectures to be given online on in a mixed manner, some variations to the mechanisms illustrated above may become necessary, aiming however at fulfilling the planned course programme.
Required Prerequisites
Basic knowledge of experimental uncertainties and data analysis methods is mandatory.
Basic knowledge of mathematical analysis, electricity, magnitism and optics is important.
It is useful, and thus it is strongly recommended, to have already passed the exams of all General Physics courses.
Attendance of Lessons
Attendance to both lectures in the Classroom and experimental sessions in Lab is mandatory.
Classroom lectures are normally held 2 or 3 times per week, 2 hours each lecture.
Lab sessions are held normally 3 times per week, 2 hours each session.
Detailed Course Content
Description and subsequent execution of 26 experiments aimed to measure physics quantities and/or to verify physical laws in the fields of electromagnetism and optics. Analysis of the collected experimental data.
The detailed program is listed in the Section "Programmazione" (Italian)Textbook Information
The teacher does not follow any textbook specifically, but utilizes material from different sources. Studying the slides shown during the lectures is normally adequate to pass the exam.
For the laboratory experiments, Instruction Manuals are provided. They can also be downloaded from the Course web site (Italian).
For students who wish to dwell deeper into the subjects of the Course, the following list is a selection of textbooks and other material concerning data analysis methods, electrical and optical instrumentation used in this Course, and related experimental procedures.
• A. FOTI, C. GIANINO: Elementi di analisi dei dati sperimentali, Liguori Ed., Napoli
• J. R. TAYLOR: Introduzione all'analisi degli errori, Zanichelli Ed., Bologna
• ISO(Int.Standard Org.): Guide to the Expression of Uncertainty in Measurement, Ginevra
• L. KIRKUP, B. FRENKEL: An Introduction to Uncertainty in Measurement, Cambridge University Press
• L. G. PARRAT: Probability and Experimental Errors in Science, Wiley & Sons Inc.,N.Y.
• F. TYLER: A Laboratory Manual of Physics, Edward Arnold Ed., London
• M. SEVERI: Introduzione alla sperimentazione fisica, Ed. Zanichelli, BolognaE. ACERBI: Metodi e strumenti di misura, Città Studi Ed., Milano
• G. CORTINI, S. SCIUTI: Misure ed apparecchi di Fisica (Elettricità), Veschi Ed., Roma
• R. RICAMO: Guida alle esperimentazioni di Fisica,Vol. 2°, Casa Editrice Ambrosiana, Milano
• F. W. SEARS: Ottica, Casa Editrice Ambrosiana, Milano
• G. E. FRIGERIO: I laser, Casa Editrice Ambrosiana, Milano
Course Planning
Subjects | Text References | |
---|---|---|
1 | STRUMENTI DI MISURA, INCERTEZZE, ELABORAZIONE E ANALISI DEI DATI Slides (3 ore) | Slides |
2 | RICHIAMO DI CONCETTI E DEFINIZIONI DI ALCUNE GRANDEZZE ELETTRICHE (3 ore) | Slides |
3 | STRUMENTAZIONE ELETTRICA DI BASE (5 ore) | Slides |
4 | MISURA DELLA INTENSITA’ DELLA CORRENTE ELETTRICA (10 ore) | Slides |
5 | MISURA DELLA CARICA ELETTRICA (8 ore) | Slides |
6 | MISURA DELLA DIFFERENZA DI POTENZIALE O TENSIONE ELETTRICA (2 ore) | Slides |
7 | MISURA DELLA RESISTENZA ELETTRICA (6 ore) | Slides |
8 | STRUMENTI ANALOGICI E DIGITALI (2 ora) | Slides |
9 | DETERMINAZIONE DELLA SENSIBILITA’ AMPEROMETRICA E DELLA RESISTENZA INTERNA DI UN GALVANOMETRO (2 ore) | Slides e scheda |
10 | DETERMINAZIONE DELLA COSTANTE BALISTICA DI UN GALVANOMETRO E MISURA DI CAPACITA’ INCOGNITE (2 ore) | Slides e scheda |
11 | COSTRUZIONE DI UN VOLTMETRO A DIVERSE PORTATE; MISURA DELLA RESISTENZA INTERNA E VARIAZIONE DELLA PORTATA DI UN VOLTMETRO (2 ore) | Slides e scheda |
12 | DETERMINAZIONE DELLA F.E.M. E DELLA RESISTENZA INTERNA DI UNA PILA CON IL METODO POTENZIOMETRICO (2 ore) | Slides e scheda |
13 | MISURA DI RESISTENZE CON IL METODO VOLT-AMPEROMETRICO (2 ore) | Slides e scheda |
14 | REALIZZAZIONE E TARATURA DI UN OHMETRO (2 ore) | Slides e scheda |
15 | MISURA DEL COEFFICIENTE DI TEMPERATURA DELLA RESISTENZA DI VARI MATERIALI (2 ore) | Slides e scheda |
16 | MISURA DI UNA RESISTENZA INCOGNITA CON IL PONTE DI WHEATSTONE (2 ore) | Slides e scheda |
17 | MISURA DI RESISTENZE DI VALORE ELEVATO MEDIANTE LA SCARICA DI UN CONDENSATORE (2 ore) | Slides e scheda |
18 | ESPERIENZA DI MILLIKAN (2 ore) | Slides e scheda |
19 | TUBI ELETTRONICI E SEMICONDUTTORI (9 ore) | Slides |
20 | MISURA DI CAMPI MAGNETICI E MOTO DI CARICHE ELETTRICHE (8 ore) | Slides |
21 | CIRCUITI ELETTRICI PERCORSI DA CORRENTE ALTERNATA (14 ore) | Slides |
22 | RILIEVO DELLA CARATTERISTICA DI UN DIODO A VUOTO (2 ore) | Slides e scheda |
23 | RILIEVO DELLE CARATTERISTICHE DI UN TRIODO (2 ore) | Slides e scheda |
24 | RILIEVO DELLA CARATTERISTICA DI UN DIODO A GIUNZIONE (2 ore) | Slides e scheda |
25 | REALIZZAZIONE E STUDIO DI UN OSCILLATORE A DENTI DI SEGA (2 ore) | Slides e scheda |
26 | MISURA DEL CAMPO MAGNETICO ALL’ INTERNO DI UN SOLENOIDE (2 ore) | Slides e scheda |
27 | TARATURA DI UNA SONDA DI HALL IN BISMUTO (2 ore) | Slides e scheda |
28 | DETERMINAZIONE DEL RAPPORTO e/m DELL’ ELETTRONE MEDIANTE IL TUBO DI WEHNELT (2 ore) | Slides e scheda |
29 | RILIEVO DELLA CURVA DI RISONANZA DI UN CIRCUITO RLC SERIE (2 ore) | Slides e scheda |
30 | RILIEVO DELLA CURVA DI RISONANZA DI UN CIRCUITO LC PARALLELO (2 ore) | Slides e scheda |
31 | CURVE DI RISPOSTA A SEGNALI SINUSOIDALI DI UN CIRCUITO RC SERIE (2 ore) | Slides e scheda |
32 | OTTICA GEOMETRICA (4 ore) | Slides |
33 | OTTICA FISICA (6 ore) | Slides |
34 | MISURA DELLA VELOCITA’ DELLA LUCE (2 ore) | Slides e scheda |
35 | MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE (2 ore) | Slides e scheda |
36 | DETERMINAZIONE DELLA DISTANZA FOCALE DI UNA LENTE DIVERGENTE (2 ore) | Slides e scheda |
37 | DETERMINAZIONE DELL' INDICE DI RIFRAZIONE DI UN PRISMA DI VETRO CON UNO SPETTROSCOPIO E MISURA DI LUNGHEZZE D' ONDA (2 ore) | Slides e scheda |
38 | MISURA DI LUNGHEZZE D' ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFFRAZIONE (2 ore) | Slides e scheda |
39 | VERIFICA DELLA LEGGE DI MALUS E MISURA DELLA CONCENTRAZIONE DI UNA SOLUZIONE CON DUE POLAROIDI (2 ore) | Slides e scheda |
Learning Assessment
Learning Assessment Procedures
The exams consists of: a) evaluation of a written scientific report on one of the experiments performed in the Lab; b) an oral discussion.
Upon completion of all Lab cycles the teacher assigns an experiment to each student. Students are given a deadline by which they all must deliver their written report to the teacher.
For the oral discussion, 8 exam session are usually set for every Academic Year. Dates can be found in the official website of the Bachelor Degree in Physics Course: http://www.dfa.unict.it/corsi/L-30/esamiExamples of frequently asked questions and / or exercises
The experiment on which the report is to be written may be any one of the 26 performed in the Lab. The choice is randomly made by the teacher exclusively.
Some of the topics of the oral discussion are the following:
• Amperometri
• Amplificatore
• Bobine di Helmholtz
• Circuiti elettrici
• Circuito LC
• Circuito RC
• Circuito rifasatore
• Condensatori in serie e/o in parallelo
• Deflessione cariche e misura e/m
• Diodo a giunzione
• Diodo a vuoto
• Effetto Hall
• Esperienza di Millikan
• Esperienze con luce polarizzata
• Filtri passa-alto e passa-basso
• Galvanometro balistico
• Generatori di tensione e corrente• LED
• Lente convergente
• Lente divergente
• Misura f.e.m. pila
• Misura sensibilità galvanometro
• Misura velocità della luce
• Misure di lunghezza d'onda
• Misure di campo magnetico
• Misure di capacità
• Misure di resistenza con metodo volt-amperometrico
• Ohmetro
• Oscillatore a dente di sega
• Oscilloscopio
• Partitori di tensione
• Ponte di Wheatstone
• Potenziometro
• Raddrizzatore di tensione alternata
• Rappresentazione vettoriale delle grandezze elettriche alternate
• Reostati
• Reostati a cassette
• Resistori in serie e/o in parallelo
• Risonanza in circuito RLC
• Scarica di un condensatore attraverso una resistenza
• Semiconduttori
• Shunt per amperometri• Shunt per voltmetri
• Spettroscopio a prisma
• Spettroscopio a reticolo
• Strumenti analogici per correnti alternate
• Strumenti digitali
• Transistors
• Triodo
• Variazione resistenza con la temperatura
• Voltmetro elettrostatico
• Voltmetro e sue portate