PHYSICS LABORATORY II M - ZModule FRONTAL TEACHING
Academic Year 2024/2025 - Teacher: FRANCESCO RUFFINOExpected Learning Outcomes
Email: francesco.ruffino@ct.infn.it
Building/Address: Dipartimento di Fisica ed Astronomia- Via S. Sofia 64- Building 6- Office 244 (second floor) Phone: 0953785461
Office hours for students: Monday 15:00-17:00, Wednesday 15:00-17:00. The teacher is, also, available for reception meeting electronically, by appointment. Any unavailability notices will be sent through Microsoft Teams and/or Studium.
The approach used in this Course is experimental and applied. Learning objectives specific to this Course are:
- Understanding electromagnetic and optical phenomena from an experimental, practical perspective.
- Becoming skilled in assembling electric circuits, in building electric, magnetic and optical devices, and in performing measurements of physical quantities and technical specifications.
- Gaining basic knowledge about the working principles of instruments, mastering general methods and developing skills useful in investigating electromagnetic and optical phenomena not necessarily already presented in the Course.
- Gaining basic knowledge and developing skills useful in designing new devices in the concerned scientific field.
- Develop the ability to correctly analyze scientific data and to present an experiment in a good- quality scientific paper where the data are analyzed and results are presented and interpreted. Develop the ability to communicate the results of a scientific measurement or experiment in an exhaustive, clear, efficient and correct fashion.
In addition, in the frame of the so-called Dublin Descriptors, this Course helps attain the following cross-disciplinary competences:
Knowledge and understanding:
- Inductive and deductive reasoning.
- Ability to formalize the description of a natural phenomenon in terms of scalar and vector physical quantities.
- Ability to formulate a problem using suitable mathematical relationships (such as algebraic,
- integral or differential) among physical quantities, and then solve it by means of analytical or numerical methods.
- Ability to arrange and set up a simple experimental apparatus, and to use scientific instruments for thermal, mechanical and electromagnetic measurements.
- Ability to perform statistical analysis of data.
Applying knowledge and understanding:
- Ability to apply the gained knowledge in order to describe physical phenomena using rigorously the scientific method.
- Ability to design simple experiments and perform analysis of their experimental data in all domains of Physics including those with technological spinoff.
Making judgements:
- Developing critical thinking.
- Ability to find the best methods to critically analyze, elaborate and interpret experimental data. Ability to understand the predictions of a theory or model.
- Ability to evaluate accuracy of measurements, linearity of instrumental response, sensitivity and selectivity of employed techniques.
Communication skills:
- Ability to orally present, using fluent scientific language and appropriate scientific vocabulary, a scientific topic, including any underlying motivations and illustrating any results.
- Ability to report in writing, using fluent scientific language and appropriate scientific vocabulary, on a scientific topic, including any underlying motivations and illustrating any results.
Course Structure
This course alternates 3 cycles of lectures in the Classroom with 3 corresponding cycles of practical sessions in the Lab. The course begins with a first cycle of lectures in the Classroom, which is followed by a corresponding first cycle of practical sessions in the Lab. Then we continue with the second cycle of lectures in the Classroom, and so on.
The classroom lectures introduce the working principles of scientific instruments and present the experimental setups of some experiments aimed at illustrating electromagnetic and optical phenomena, at verifying natural laws, and at measuring physical properties in the same fields. Procedures to analyze and ways to present the data that will be collected in the Lab are specifically highlighted.
During the cycles of practical sessions in the Lab the students actually perform the experiments and make the measurements previously introduced by the Classroom lectures.
During the periods devoted to lectures in the Classroom there are NO sessions in the Lab. During the periods devoted to practical sessions in the Lab there are NO lectures in the classroom.
Should circumstances require the lectures to be given online on in a mixed manner, some variations to the mechanisms illustrated above may become necessary, aiming however at fulfilling the planned course programme.
6 CFUs (corresponding to 7 hours each) are dedicated to lectures in the Classroom for a total of 42 hours, while 6 CFUs (corresponding to 15 hours each) are devoted to the practical sessions in the Lab with a total of 90 hours. Altogether, thus, this 12-CFU Course comprises 132 hours of teaching.
Required Prerequisites
It is essential to have acquired basic knowledge of error theory and data analysis methods.
Basic knowledge of mathematical analysis, electromagnetism and optics is important.
It is useful, and therefore strongly recommended, to have passed the exams of all General Physics courses.
Attendance of Lessons
Attendance at classroom lessons is normally compulsory. Presence at laboratory sessions is mandatory. Signatures of attendance are collected during both.
Classroom lessons are usually held twice a week, 2 hours each lesson.
Laboratory sessions are usually held 3 times a week, 2 hours each session.
Detailed Course Content
Description and subsequent execution of 26 experiments aimed to measure physics quantities and/or to verify physical laws in the fields of electromagnetism and optics. Analysis of the collected experimental data.
The detailed program is listed in the Section "Programmazione".
Textbook Information
The teacher does not follow any textbook specifically, but utilizes material from different sources. Studying the slides shown during the lectures is normally adequate to pass the exam.
For the laboratory experiments, Instruction Manuals are provided. They can also be downloaded from the Course web site (in Italian only).
For students who wish to dwell deeper into the subjects of the Course, the following list is a selection of textbooks and other material concerning data analysis methods, electrical and optical instrumentation used in this Course, and related experimental procedures.
A. FOTI, C. GIANINO: Elementi di analisi dei dati sperimentali, Liguori Ed., Napoli
J. R. TAYLOR: Introduzione all'analisi degli errori, Zanichelli Ed., Bologna
ISO (Int.Standard Org.): Guide to the Expression of Uncertainty in Measurement, Ginevra
L. KIRKUP, B. FRENKEL: An Introduction to Uncertainty in Measurement, Cambridge University
Press
L. G. PARRAT: Probability and Experimental Errors in Science, Wiley & Sons Inc.,N.Y. F. TYLER: A Laboratory Manual of Physics, Edward Arnold Ed., London
M. SEVERI: Introduzione alla sperimentazione fisica, Ed. Zanichelli, BolognaE. ACERBI: Metodi e strumenti di misura, Città Studi Ed., Milano
G. CORTINI, S. SCIUTI: Misure ed apparecchi di Fisica (Elettricità), Veschi Ed., Roma
R. RICAMO: Guida alle esperimentazioni di Fisica,Vol. 2°, Casa Editrice Ambrosiana, Milano
F. W. SEARS: Ottica, Casa Editrice Ambrosiana, Milano
G. E. FRIGERIO: I laser, Casa Editrice Ambrosiana, Milano
Course Planning
Subjects | Text References | |
---|---|---|
1 | MEASUREMENT INSTRUMENTS, UNCERTAINTIES, DATA PROCESSING AND ANALYSIS 3h | Slides |
2 | RECALL OF CONCEPTS AND DEFINITIONS OF SOME ELECTRICAL QUANTITIES 3h | Slides |
3 | BASIC ELECTRICAL EQUIPMENT 5h | Slides |
4 | MEASUREMENT OF ELECTRIC CURRENT INTENSITY 10h | Slides |
5 | ELECTRIC CHARGE MEASUREMENT 8h | Slides |
6 | MEASUREMENT OF THE DIFFERENCE IN POTENTIAL OR ELECTRICAL VOLTAGE 2h | Slides |
7 | MEASUREMENT OF ELECTRICAL RESISTANCE 6h | Slides |
8 | ANALOGUE AND DIGITAL INSTRUMENTS 2h | Slides |
9 | DETERMINATION OF THE AMPEROMETRIC SENSITIVITY AND INTERNAL RESISTANCE OF A GALVANOMETER 2h | Slides and card |
10 | DETERMINATION OF THE BALLISTICS CONSTANT OF A GALVANOMETER AND MEASUREMENT OF UNKNOWN CAPACITIES 2h | Slides and card |
11 | CONSTRUCTION OF A VOLTMETER WITH DIFFERENT RATINGS; MEASUREMENT OF INTERNAL RESISTANCE AND VARIATION OF THE RANGE OF A VOLTMETER 2h | Slides and card |
12 | DETERMINATION OF THE E.M.F. AND OF THE INTERNAL RESISTANCE OF A BATTERY WITH THE POTENTIOMETRIC METHOD 2h | Slides and card |
13 | MEASUREMENT OF RESISTANCES WITH THE VOLT-AMPEROMETRIC METHOD 2h | Slides and card |
14 | CONSTRUCTION AND CALIBRATION OF AN OHMETER 2h | Slides and card |
15 | MEASUREMENT OF THE TEMPERATURE COEFFICIENT OF RESISTANCE OF VARIOUS MATERIALS 2h | Slides and card |
16 | MEASUREMENT OF AN UNKNOWN RESISTANCE WITH THE WHEATSTONE BRIDGE 2h | Slides and card |
17 | MEASUREMENT OF HIGH VALUE RESISTANCES THROUGH THE DISCHARGE OF A CAPACITOR 2h | Slides and card |
18 | MILLIKAN EXPERIENCE 2h | Slides and card |
19 | ELECTRONIC TUBES AND SEMICONDUCTORS 9h | Slides and card |
20 | MEASUREMENT OF MAGNETIC FIELDS AND MOTION OF ELECTRIC CHARGES 8h | Slides and card |
21 | ELECTRICAL CIRCUITS CARRIED BY ALTERNATE CURRENT 14h | Slides and card |
22 | SURVEY OF THE CHARACTERISTIC OF A VACUUM DIODE 2h | Slides and card |
23 | SURVEY OF THE CHARACTERISTICS OF A TRIOD 2h | Slides and card |
24 | SURVEY OF THE CHARACTERISTIC OF A JUNCTION DIODE 2h | Slides and card |
25 | CREATION AND STUDY OF A SAW-TOOTH OSCILLATOR 2h | Slides and card |
26 | MEASUREMENT OF THE MAGNETIC FIELD INSIDE A SOLENOID 2h | Slides and card |
27 | CALIBRATION OF A BISMUTH HALL PROBE 2h | Slides and card |
28 | DETERMINATION OF THE e/m RATIO OF THE ELECTRON USING THE WEHNELT TUBE 2h | Slides and card |
29 | SURVEY OF THE RESONANCE CURVE OF A SERIES 2h RLC CIRCUIT | Slides and card |
30 | SURVEY OF THE RESONANCE CURVE OF A PARALLEL LC CIRCUIT 2h | Slides and card |
31 | RESPONSE CURVES TO SINE SIGNALS OF AN RC CIRCUIT SERIES 2h | Slides and card |
32 | GEOMETRIC OPTICS 4h | Slides and card |
33 | PHYSICAL OPTICS 6h | Slides and card |
34 | MEASUREMENT OF THE SPEED OF LIGHT 2h | Slides and card |
35 | MEASUREMENT OF THE FOCAL DISTANCE OF A CONVERGENT LENS 2h | Slides and card |
36 | DETERMINATION OF THE FOCAL DISTANCE OF A DIVERGENT LENS 2h | Slides and card |
37 | DETERMINATION OF THE INDEX OF REFRACTION OF A GLASS PRISM WITH A SPECTROSCOPE AND MEASUREMENT OF WAVELENGTHS 2h | Slides and card |
38 | MEASUREMENT OF WAVELENGTHS WITH A DIFFRACTION GRATING SPECTROSCOPE 2h | Slides and card |
39 | VERIFICATION OF MALUS' LAW AND MEASUREMENT OF THE CONCENTRATION OF A SOLUTION WITH TWO POLAROIDS 2h | Slides and card |
Learning Assessment
Learning Assessment Procedures
The exam includes the evaluation of a report on one of the experiments carried out in the laboratory and an oral test.
Report: At the end of the
last of the 3 cycles of laboratory exercises, the teacher assigns an experience
to each student, chosen from all those carried out in the 3 cycles. The student
will have to draft and send to the teacher a report on the assigned experience
within a time established by the teacher. The accepted formats are: .doc,
.docx, .pdf. Please assign only your name, surname and student number to the
file as file name. last of the 3 cycles of laboratory exercises, the teacher assigns an experience to each student, chosen from all those carried out in the 3 cycles. The student
will have to draft and send to the teacher a report on the assigned experience within a time established by the teacher. The accepted formats are: .doc, .docx, .pdf. Please assign only your name, surname and student number to the
file as file name.
The student must
have attended the laboratory, performed all the experiments, collected and
stored the experimental data.The report is evaluated with a mark out of thirty, which is communicated to each student. The report will be commented on by the teacher during the oral exam. There is a threshold of 18/30 on the evaluation of the Report to access the oral exam. Upon failure due to evaluation of the essay, the candidate will have to repeat the experience which will subsequently be reassigned by the teacher.
The report, and its grade, are valid within the session within which the student has decided to complete the oral exam. In other words, the student can appear for the oral test at any session within a given session. Following a failure in the oral test, the candidate will have to repeat the experience which will subsequently be reassigned by the teacher.
Oral exam: covers all the topics of the course and may also include a specific discussion of the report.
To pass the oral test, the student must demonstrate knowledge of all the topics discussed and must explain them in a clear and comprehensible manner to anyone who has the necessary preliminary knowledge but does not already know the specific topic. The vote is proportional to the degree to which these two requirements appear to be satisfied.
The typical duration of the oral exam ranges from 30 to 60 minutes, with an average of 40 minutes.
The final grade takes into account both the evaluation of the Report and the evaluation of the oral exam, but is not necessarily a rigorous arithmetic average of the two.
EXAM DATES
Normally, 8 exam sessions are scheduled in each academic year; consult the Exam Calendar of the Three-year Degree Course in Physics: http://www.dfa.unict.it/corsi/L-30/esami.
Examples of frequently asked questions and / or exercises
The experience on which to carry out the report will be any of the 26 carried out in the Laboratory. The choice is made exclusively by the teacher with random criteria at the time of assignment.
Some topics typically asked about during the oral exam are the following:
• Ammeters
• Amplifier
• Helmholtz coils
• Electrical circuits
• LC circuit
• RC circuit
• Power factor correction circuit
• Capacitors in series and/or parallel
• Charge deflection and e/m measurement
• Junction diode
• Vacuum diode
• Hall effect
• Millikan's experience
• Experiments with polarized light
• High-pass and low-pass filters
• Ballistic galvanometer
• Voltage and current generators
• LEDs
• Converging lens
• Diverging lens
• EMF measurement stack
• Measures galvanometer sensitivity
• Measure the speed of light
• Wavelength measurements
• Magnetic field measurements
• Capacity measures
• Resistance measurements with volt-amperometric method
• Ohmeter
• Sawtooth oscillator
• Oscilloscope
• Voltage dividers
• Wheatstone Bridge
• Potentiometer
• AC voltage rectifier
• Vector representation of alternating electrical quantities
• Rheostats
• Cassette rheostats
• Resistors in series and/or parallel
• Resonance in RLC circuit
• Discharge of a capacitor through a resistor
• Semiconductors
• Shunt for ammeters
• Shunt for voltmeters
• Prism spectroscope
• Grating spectroscope
• Analog instruments for alternating currents
• Digital tools
• Transistors
• Triode
• Resistance variation with temperature
• Electrostatic voltmeter
• Voltmeter and its ranges