

Þ

Informazioni generali sul Corso di Studi

Università	Università degli Studi di CATANIA
Nome del corso in italiano	Fisica (IdSua:1580950)
Nome del corso in inglese	Physics
Classe	LM-17 - Fisica
Lingua in cui si tiene il corso	inglese
Eventuale indirizzo internet del corso di laurea	http://www.dfa.unict.it/corsi/LM-17
Tasse	https://www.unict.it/didattica/tassa-d%E2%80%99iscrizione-e-contributi
Modalità di svolgimento	a. Corso di studio convenzionale

Referenti e Strutture

Presidente (o Referente o Coordinatore) del CdS	REITANO Riccardo
Organo Collegiale di gestione del corso di studio	Consiglio di Corso di Laurea Magistrale in Physics
Struttura didattica di riferimento	Fisica ed Astronomia "Ettore Majorana"

Docenti di Riferimento

N.	COGNOME	NOME	SETTORE	QUALIFICA	PESO	TIPO SSD
1.	ANGILELLA	Giuseppe Gioacchino Neil		PA	1	
2.	BRANCHINA	Vincenzo		PA	1	
3.	CAPPUZZELLO	Francesco		PA	1	

4.	CARUSO	Rossella		PA	1	
5.	DEL POPOLO	Antonino		RU	1	
6.	FALCI	Giuseppe		РО	0,5	
7.	GRECO	Vincenzo		РО	1	
8.	GUELI	Anna Maria		PA	0,5	
9.	LANZAFAME	Alessandro Carmelo		PA	0,5	
10.	LO PRESTI	Domenico		PA	1	
11.	MIRABELLA	Salvatore		PA	1	
12.	PALADINO	Elisabetta		PA	0,5	
13.	POLITI	Giuseppe		PA	0,5	
14.	RAPISARDA	Andrea		PA	1	
15.	STELLA	Giuseppe		RD	0,5	
16.	TORRISI	Felice		PA	1	
17.	TRICOMI	Alessia Rita Serena Maria Ausilia		PO	1	
18.	ZUCCARELLO	Francesca		PA	1	
Rapp	resentanti Studenti		La Magna Paola Pernace Arcang Pitronaci Antoni Saia Clara clara Spina Andrea a Ursino Federico	gelo arcangelop no uni362183@ usaia.1997@gr ndreaspina99@	oernace@gn Dstudium.un mail.com Dgmail.com	nail.com ict.it
Gruppo di gestione AQ			SARA DE FRAN MASSIMO GER FRANCESCO M ANTONINO PIT RICCARDO RE FRANCESCO F	RMANA' M. D. PELLEGF RONACI ITANO RIGGI	RINO	
Tutor			Giuseppe Gioad Stefano ROMAI Vincenzo BRAN Maria Grazia Gl Alessandro Car Francesco LEO Domenico LO P Alessandro PLU Giuseppe POLI' Andrea RAPISA Alessia Rita Sei	NO ICHINA RIMALDI melo LANZAFA NE RESTI JCHINO TI IRDA	AME	I

Francesca ZUCCARELLO
Giuseppe FALCI
Elisabetta PALADINO
Anna Maria GUELI
Vincenzo GRECO
Rossella CARUSO
Catia Maria Annunziata PETTA
Salvatore MIRABELLA
Sebastiano Francesco ALBERGO
Giovanni Maria PICCITTO
Francesco CAPPUZZELLO
Francesco Maria Dimitri PELLEGRINO

→

Il Corso di Studio in breve

06/04/2022

Il Corso di Laurea Magistrale Internazionale in Physics, di durata biennale, fornisce allo studente approfondimenti disciplinari che estendono e rafforzano le conoscenze acquisite nel percorso triennale, in settori specifici della fisica sia di base che più specialistici. Sono previsti approfondimenti anche per attività affini di tipo matematico e informatico. Gli obiettivi formativi del corso di studi comprendono:

- lo sviluppo di capacità di studio e di apprendimento autonome e della capacità di integrazione delle conoscenze;
- l'applicazione della capacità di comprensione e della capacità di soluzione di problemi a tematiche nuove o non familiari, inserite in ampi contesti lavorativi o di ricerca;
- lo sviluppo e la pratica della capacità di comunicare, in modo chiaro e privo di ambiguità, le conoscenze e i risultati conseguiti;
- solide basi per proseguire gli studi in dottorati di ricerca o master di secondo livello o scuole di specializzazione. Il ciclo di studi prevede lezioni frontali, esercitazioni e attività pratiche di laboratorio.

La preparazione della tesi di laurea costituisce un momento fondamentale del Corso di Laurea Magistrale in Physics, in cui lo studente, tramite la guida di uno o più docenti, approfondisce in maniera originale un tema di particolare interesse e attualità per la fisica o le sue applicazioni. La preparazione della tesi di laurea può comprendere un periodo presso imprese o enti esterni, gruppi e laboratori di ricerca dell'Ateneo o enti di ricerca, in Italia o all'estero. Per il ruolo fondamentale che la tesi di laurea riveste nella maturazione delle conoscenze e nella formazione delle competenze, viene riservato un elevato numero di crediti (30-40 CFU) alla preparazione della prova finale.

I risultati dell'apprendimento vengono controllati lungo il corso di laurea mediante colloqui, prove scritte, prove pratiche e relazioni sull'attività svolta. Essi vengono infine verificati in maniera più ampia e organica nella valutazione e nella discussione della tesi di laurea.

Il Corso di Laurea Magistrale Internazionale in Physics è articolato in sei curricula: Astrophysics, Applied Physics, Condensed Matter Physics, Nuclear and Particle Physics, Theoretical Physics, Nuclear Phenomena and their Applications. I primi cinque Curricula riflettono i diversi filoni di ricerca in cui sono impegnati i docenti del Dipartimento di Fisica e Astronomia 'Ettore Majorana' (DFA), in stretta sinergia con gli enti di ricerca e le aziende operanti nel territorio (INFN, INAF, CNR, INGV, ENEL, STM, ARPA-CT, ASP-CT). Tale sinergia, che si esplica anche nel diretto coinvolgimento di diversi ricercatori dei suddetti enti di ricerca nella didattica erogata, fornisce un valore aggiunto nel trasferimento di conoscenze in tematiche di frontiera alle nuove generazioni.

Il sesto curriculum: 'Nuclear Phenomena and Their Applications' (NUCPHYS), è stato istituito nell'Anno Accademico 2017-2018 nell'ambito di un Joint Master Programme Erasmus Mundus. Il programma, della durata di due anni (120 ECTS), è offerto da un consorzio di 8 Università tra Spagna, Francia e Italia con la partecipazione di 16 centri di ricerca/aziende come partner associati, e permette di conseguire un titolo multiplo di laurea Internazionale in Fisica Nucleare riconosciuto nei paesi delle Università Consorziate.

Inoltre, l'articolazione del CdL Magistrale in Physics in sei Curricula, si è rivelato particolarmente utile e propedeutico

all'accesso a tre corsi di Dottorato: 'Fisica', 'Sistemi Complessi per le Scienze Fisiche, Socio-Economiche e della Vita', 'Scienza dei Materiali e Nanotecnologie', di cui i primi due attivati presso il DFA.

Ulteriori informazioni sul Corso di Laurea Magistrale Internazionale in Physics potranno essere fornite su richiesta, contattando per e-mail:

- Direttore del Dipartimento di Fisica e Astronomia 'Ettore Majorana': Prof.ssa Maria Grazia Grimaldi (mariagrazia.grimaldi@ct.infn.it)
- Presidente del CdL Magistrale in Physics: Prof. Riccardo Reitano (riccardo.reitano@dfa.unict.it)
- Responsabile Unità Operativa della Didattica: Dott.ssa Sara De Francisci (saradef@unict.it)
- Unità di supporto alla didattica: Dott. Alessandro Barresi (abarresi@unict.it).

Link: http://

QUADRO A1.a

Consultazione con le organizzazioni rappresentative - a livello nazionale e internazionale - della produzione di beni e servizi, delle professioni (Istituzione del corso)

20/09/2019

Il giorno 8 maggio 2018 presso l'aula magna del Dipartimento di Fisica e Astronomia (DFA), presenti il direttore del dipartimento, i presidenti dei CdS in Fisica del DFA (L30 e LM17) e i referenti dei curricula in cui è articolato il CdLM, si è svolto un incontro con rappresentanti del mondo del lavoro, per un confronto fra le performance dei laureati in Fisica e le competenze richieste per i profili professionali di riferimento, al fine di consentire un più rapido inserimento nel mondo del lavoro. All'incontro sono stati invitati come rappresentanti del mondo del lavoro i presidenti delle sezioni locali degli enti di ricerca nazionali (IMM-CNR, INAF-OACT, INFN-sezione CT e INFN-LNS, INGV-OE, CSFNSM) e referenti del mondo industriale (ST-Microelectronics, ENEL, Micron, Proteo Control Technologies, Proxima, CSI Management, Qibit, Sasol, Tecnologie avanzate, 3Sun), degli enti locali (ARPA-CT) e delle agenzie interinali (Randstadt).

I rappresentanti delle imprese hanno espresso grande apprezzamento per gli sforzi finora compiuti dal CdLM del DFA-UniCT nella organizzazione di percorsi formativi in un contesto sempre più internazionale. Hanno presentato quali sono le competenze tecnico-scientifiche e le soft skills più apprezzate nei laureati in fisica da parte delle aziende, suggerendo di potenziare questi aspetti all'interno dell'offerta formativa relativa alle più recenti coorti, che ritengono comunque già molto valida. Hanno confermato infine la loro disponibilità a ricevere laureandi presso le loro aziende per tirocinio e per lavoro di tesi nonché la disponibilità a tenere seminari di orientamento al mondo del lavoro.

Il Presidente del CdS ha presentato agli intervenuti l'offerta formativa del Corso di Laurea Magistrale, mettendo in evidenza in che modo la proposta risponda alle esigenze di competenze e skills evidenziate dalle parti interessate e come essa, dopo una solida formazione di base durante il Corso di laurea triennale, garantisca una formazione magistrale più mirata alla specializzazione, che in alcuni ambiti è direttamente sfruttabile in un contesto professionale.

Alla luce di quanto discusso si è deciso di costituire un Comitato di Indirizzo, la cui istituzione è stata deliberata dal Consiglio di CdS nella seduta del 10/12/2018. Il C.I. sarà costituito da rappresentanti del CdS, degli Enti di ricerca, delle industrie e delle piccole e medie imprese che insistono sul territorio e della Scuola.

Precedenti consultazioni:

Nei giorni 22 e 23 aprile 2013, i Presidenti dei CdS L-30 e LM-17 Scienze e tecnologie fisiche, hanno illustrato ai rappresentanti degli enti di ricerca pubblici operanti sul territorio catanese a livello nazionale e internazionale, e cioè ai direttori della Sezione di Catania e dei laboratori Nazionali del Sud dell'INFN, al direttore dell'IMM-CNR, al direttore del CSFNSM, al direttore dell'INAF Osservatorio Astrofisico di Catania, al Catania site general Manager della St MicroElectronics, e con l'intervento anche del Direttore del Dipartimento di Fisica e Astronomia, la proposta del nuovo ordinamento didattico già approvata dal DFA. Nel corso della successiva articolata discussione sono state messe in evidenza le motivazioni che hanno portato alla proposta, con le finalità di migliorare la formazione di base e quella specialistica, rendere più agevole il percorso degli studenti e nello stesso tempo consentire un loro più rapido inserimento nel mondo lavorativo. A questo proposito si è discusso anche della possibilità di attivare in un prossimo futuro, in collaborazione con i vari enti di ricerca, dei master di primo e secondo livello in modo da attivare anche in sede locale una valida alternativa alla Laurea Magistrale e consentire la formazione di tecnici specializzati di cui il territorio ha certamente bisogno e di favorire un più rapido inserimento dei laureati magistrali nel mondo del lavoro.

I rappresentanti, alla luce delle motivazioni ampiamente condivise per i corsi di laurea proposti, hanno espresso unanime, parere favorevole.

Il giorno 6 ottobre 2008 alle ore 16,00, presso l'aula F del Dipartimento di Fisica e Astronomia si è tenuta la riunione della Giunta della Struttura Didattica Aggregata di Fisica (SDAF) con i rappresentanti degli enti di ricerca pubblici operanti sul territorio catanese, e cioè INFN, l'INAF, il CNR, i rappresentanti della St MicroElectronics, dell'IMM e con l'intervenuto del Preside delle Facoltà di Scienze MM.FF.NN. Il Presidente della SDAF illustra la proposta del nuovo ordinamento per il

corso di Laurea Magistrale proposto dalla SDAF e approvato dalla Facoltà di Scienze MM.FF.NN. Segue una articolata discussione in cui vengono messe in evidenza le motivazioni che hanno portato alla proposta del nuovo ordinamento con le finalità di rendere più agevole il percorso degli studenti e nello stesso tempo consentire un loro più rapido inserimento nel mondo lavorativo. A questo proposito si è discussa anche la possibilità di attivare quanto prima, in collaborazione con i vari enti di ricerca, dei master di secondo livello per un più rapido inserimento dei laureati nel mondo del lavoro. I presenti alla luce delle motivazioni ampiamente condivise per il corso di laurea proposto esprimono infine unanimi, parere favorevole.

Q

QUADRO A1.b

Consultazione con le organizzazioni rappresentative - a livello nazionale e internazionale - della produzione di beni e servizi, delle professioni (Consultazioni successive)

14/04/2022

Il collegamento tra il mondo universitario e quello del lavoro rappresenta una delle priorità del Dipartimento di Fisica e Astronomia 'Ettore Majorana' (DFA). Esso viene perseguito sia nella fase di progettazione dei Corsi di Studio che ad esso afferiscono, sia nelle occasioni di incontro tra studenti, laureati, figure professionali, enti di ricerca e aziende. Allo scopo di consolidare e ampliare le relazioni di collaborazione con le realtà territoriali e del mondo del lavoro e della ricerca e sulla base delle indicazioni ministeriali e delle più recenti Linee Guida ANVUR, il Consiglio di Corso di Laurea Magistrale in Physics nella seduta del 10 dicembre 2018 ha istituito un Comitato di Indirizzo (CI) con l'obiettivo di avere una consultazione periodica del mondo imprenditoriale del lavoro, del mondo della Pubblica Amministrazione (PA), dei servizi, della scuola e della ricerca.

Fanno parte del C.I. il Presidente del Corso di Laurea magistrale in Physics, il Presidente del Corso di Laurea in Fisica, i Docenti referenti dei curricula del CdLM, i Coordinatori dei Dottorati di ricerca attivati presso il DFA, Rappresentanti degli enti di ricerca (CNR, CSFNSM, INAF, INFN, INGV), Rappresentanti delle Imprese (ENEL, STM), Rappresentanti degli enti locali (ARPA-CT, ASP-CT), Rappresentanti di Associazioni coerenti con i CdS (Albo professionale di Chimici&Fisici), Rappresentante della Scuola (Dirigente scolastico laureato in Fisica), Rappresentanti degli studenti, Rappresentanti dei dottorandi e dei laureati da non più di otto anni, il responsabile della segreteria didattica del CdLM. Il Comitato d'Indirizzo, dal momento della sua costituzione, si è riunito annualmente, in data 27.3.2019, 21.2.2020 e 18.2.2021. Durante la prima seduta, è stato deliberato il Regolamento del C.I., in particolare le sue funzioni. I rappresentanti del mondo del lavoro hanno espresso il loro apprezzamento per le competenze disciplinari con cui i laureati del CdLM si affacciano al mondo del lavoro e hanno dato importanti feedback, in particolare su alcune competenze trasversali che sono da rafforzare. Durante la seduta successiva, avvenuta nella fase di programmazione dell'offerta didattica per il successivo A.A., sono state presentate le iniziative condotte a seguito della prima consultazione col Comitato d'Indirizzo. È stata avviata una lunga discussione tra le parti, atta a valutare le principali competenze che le aziende e gli enti ricercano in un laureato magistrale in Fisica. Sono state avanzate diverse possibili iniziative mirate a rafforzare il legame tra il mondo accademico e quello lavorativo (seminari sulla preparazione di progetti di ricerca, potenziamento di soft skills). In occasione del terzo incontro, avvenuto durante la fase di programmazione dell'offerta didattica A.A. 2021/2022, sono state discussi con gli stakeholders gli aspetti da implementare e i risultati dei sondaggi sulle opinioni degli studenti e dei laureati. Durante l'incontro, è stata inoltre ribadita, da parte dei membri del CI, l'importanza di organizzare i percorsi formativi in modo da favorire le attività di stage e tirocinio presso aziende e enti di ricerca, allo scopo di instaurare contatti sempre più stretti fra gli studenti e il mondo del lavoro.

Si sottolinea come, In fase di costituzione del Comitato di Indirizzo, sia stata ritenuta essenziale la partecipazione dei Coordinatori dei Dottorati di Ricerca incardinati al DFA (Fisica, Scienza dei Materiali e Nanotecnologie, Sistemi Complessi per le Scienze Fisiche, Socio-economiche e della Vita), in modo che le periodiche consultazioni con il C.I. possano fornire specifiche e focalizzate indicazioni sul miglioramento ed evoluzione del CdLM, non solo in relazione a immediati sbocchi lavorativi post-laurea ma, anche, in relazione al proseguimento di studi di alta formazione.

Inoltre, come già specificato, fanno parte del C.I. anche i rappresentanti degli studenti e dei dottorandi, i quali, in questo consesso, e negli altri organi in cui hanno una rappresentanza (Gruppi di Assicurazione della Qualità di CdS e di

Dipartimento, Commissione Paritetica), hanno apportato il loro contributo, fornendo elementi di analisi e riflessione che hanno un ruolo fondamentale nella concertazione delle azioni volte a migliorare la qualità del CdS.

Link: http://www.dfa.unict.it/it/corsi/lm-17/comitato-di-indirizzo (Comitato di Indirizzo)

Profilo professionale e sbocchi occupazionali e professionali previsti per i laureati

Fisici - Astronomi e Astrofisici

funzione in un contesto di lavoro:

Il laureato magistrale in Fisica sarà in grado di svolgere le seguenti funzioni:

- Ricercatore presso Enti di ricerca e Università
- Ricercatore presso industrie nel settore R&D
- Responsabile, con mansioni di coordinamento e gestione, delle attività di laboratori in cui sono presenti strumentazione e macchinari complessi
- Progettazione e gestione delle tecnologie in ambiti correlati con le discipline fisiche, nei settori dell'industria, dell'ambiente, della sanità, dei beni culturali e della pubblica amministrazione, garantendo la promozione e lo sviluppo dell'innovazione scientifica e tecnologica.
- Responsabile per la Gestione e il controllo della qualità di processi e di prodotti
- Manager con mansioni in trattazione di grandi moli di dati
- Consulente e promotore in attività di spin-off
- Docente e promotore della cultura scientifica, previa acquisizione di ulteriori specializzazioni.

competenze associate alla funzione:

Il laureato magistrale in Fisica possiede le seguenti competenze:

- capacità nel condurre, in autonomia e in gruppo, attività di ricerca fondamentale e applicata;
- capacità di affrontare problemi anche in contesti complessi in cui è richiesto un approccio quantitativo;
- abilità nell'uso di strumentazione complessa in laboratori nei vari ambiti della fisica;
- capacità di collaborare con colleghi, anche in un contesto interdisciplinare e internazionale e con ruoli di responsabilità;
- competenze in progettazione di nuove tecnologie in ambito ambientale, dei beni culturali, della medicina, della strumentazione per l'astrofisica, delle nanotecnologie;
- competenze nello sviluppo e nell'uso di software di analisi statistica e di simulazione
- capacità di presentare il proprio lavoro a interlocutori specialisti e non specialisti

sbocchi occupazionali:

I laureati magistrali in Fisica potranno trovare impiego, a livello dirigenziale, in: attività di ricerca fondamentale e applicata, presso enti di ricerca pubblici e privati quali l'INFN, l'INAF, il CNR, il CERN, l'INGV, l'ENEA, l'ESO, l'ASI, l'ESA etc.;

- ambito industriale nella progettazione di tecnologiche innovative in aziende che investono in R&D su proprietà di nuovi materiali, nanotecnologie, ottica, meccanica fine, dispositivi elettronici, sensoristica, strumentazione per applicazioni energetiche, ambientali, etc.
- agenzie regionali per l'ambiente, per la prevenzione e il controllo dei rischi ambientali,
- soprintendenza per i BBCCAA, per analisi nel campo dei beni culturali,
- protezione civile per analisi del rischio sismico,
- -radioprotezione dell'uomo e dell'ambiente, controllo e gestione di apparecchiature che emettono radiazione ionizzante

presso aziende sanitarie, laboratori di analisi e studi medici;

- analisi dati e modellizzazione di sistemi complessi e di fenomeni stocastici in banche, società finanziarie e di assicurazione e di consulenza:
- applicazioni di conoscenze matematiche e informatiche in studi di progettazione informatica.

I laureati possono prevedere come occupazione l'insegnamento nella scuola, una volta completato il processo di abilitazione all'insegnamento e superati i concorsi previsti dalla normativa vigente.

La Laurea Magistrale in Fisica è, inoltre, l'unico titolo di studio che consente l'accesso al concorso di ammissione alla Scuola di Specializzazione di Area Sanitaria in Fisica Medica per il conseguimento del titolo in Specialista in Fisica Medica rientrante tra le professioni sanitarie.

Inoltre la recente costituzione dell'Albo professionale dei Chimici&Fisici rappresenterà un'ulteriore opportunità di sbocchi lavorativi per i laureati magistrali in Fisica.

Il corso prepara alla professione di (codifiche ISTAT)

- 1. Fisici (2.1.1.1.1)
- 2. Astronomi ed astrofisici (2.1.1.1.2)

QUADRO A3.a

Conoscenze richieste per l'accesso

20/09/2019

Per essere ammessi al Corso di Laurea Magistrale in Fisica occorre essere in possesso di laurea della classe delle lauree in Scienze e Tecnologie Fisiche (L-30) e della corrispondente classe relativa al DM 509/99.

L'accesso è altresì consentito a coloro che siano in possesso di Laurea conseguita in altre classi o previgenti ordinamenti, o di Diploma universitario di durata triennale o di altro titolo di studio conseguito all'estero e riconosciuto idoneo, e che siano in possesso di idonei requisiti curriculari nelle aree disciplinari delle scienze matematiche e fisiche, come specificato nel Regolamento didattico del CdS e che possiedono un'adeguata conoscenza della lingua inglese.

La preparazione personale dei candidati viene accertata, ai fini dell'ammissione al corso di laurea magistrale, previo possesso dei requisiti curriculari, mediante modalità di verifica che saranno dettagliate nel Regolamento didattico del CdS, che definirà altresì i criteri per verificare che il candidato sia in grado di utilizzare fluentemente (a un livello almeno B2),, in forma scritta e orale, la lingua inglese, con riferimento anche ai lessici disciplinari.

Il regolamento didattico del Corso di Laurea disciplina, altresì, l'accesso al corso di laurea LM 17 a seguito di richiesta di passaggio o trasferimento di studenti già immatricolati negli Anni Accademici precedenti in altri corsi di laurea dell'Università di Catania o di altro Ateneo.

QUADRO A3.b

Modalità di ammissione

06/04/2022

Per essere ammessi al CdS magistrale in Physics occorre:

i) essere in possesso della laurea o del diploma universitario di durata triennale, ovvero di altro titolo di studio conseguito all'estero, riconosciuto idoneo dal Consiglio di Corso di Studio;

ii) essere in possesso dei seguenti specifici requisiti curriculari:

- 27 CFU di SSD di Matematica
- 60 CFU di SSD di Fisica
- essere in grado di utilizzare fluentemente la lingua inglese, in forma scritta e orale, con riferimento anche ai lessici disciplinari (a un livello almeno B2).
- iii) superare la verifica di adeguata preparazione.

Si considera verificata l'adeguata preparazione nel caso in cui il candidato abbia ottenuto una Laurea Triennale in Fisica con votazione finale non inferiore a 100 e abbia una certificazione (o autocertificazione) di conoscenza della lingua inglese di livello B2 o abbia superato l'esame di un corso universitario di lingua inglese per cui si attesti il raggiungimento di tale livello, fermo restando quanto previsto dal Regolamento didattico d'Ateneo sulla valutazione della non obsolescenza dei contenuti conoscitivi dei crediti conseguiti da più di 6 anni.

Negli altri casi vi sarà una prova di ammissione, che ha lo scopo di verificare l'adeguatezza della preparazione e consiste in un colloquio con una commissione di valutazione, annualmente nominata dal Consiglio di CdS, che accerterà le conoscenze e le competenze richieste per l'immatricolazione. Il colloquio si svolgerà in data, sede e ora pubblicati sul sito dell'Ateneo (http://www.unict.it) e avrà come oggetto argomenti di base riguardanti: conoscenze fondamentali della fenomenologia e dei modelli della fisica classica e moderna; competenze di laboratorio, in particolare dedicate alla conoscenza della strumentazione di base, alla misura e all'elaborazione dei dati anche tramite strumenti informatici. Nel corso del colloquio, per i candidati non in possesso di relativa certificazione, sarà verificata anche la conoscenza della lingua inglese. Il colloquio potrà essere svolto anche per via telematica su richiesta del candidato al responsabile del procedimento.

A seguito del colloquio, il candidato può essere valutato dalla commissione come AMMESSO o NON AMMESSO. I candidati ammessi potranno procedere all'iscrizione secondo le procedure per le immatricolazioni e le iscrizioni ai corsi di studio che saranno pubblicate su http://www.unict.it.

Per le modalità di accesso al curriculum Nuclear Phenomena and their Applications (NucPhys) si fa riferimento al Consortium Agreement (http://www.emm-nucphys.eu/).

Link: https://www.unict.it/it/corsi-numero-non-programmato/2021-2022/procedura-di-ammissione-al-1%C2%B0-anno-corsi-di-laurea-e-di (Avviso per l'ammissione al primo anno dei corsi di studio a numero non programmato A.A. 2021 - 2022)

Pdf inserito: visualizza

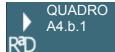
Descrizione Pdf: Allegati Avviso di ammissione LM17 2020 - 2021

Il Corso di Laurea Magistrale in Fisica dell'Università degli Studi di Catania ha come obiettivo la preparazione di una figura di alto livello di qualificazione nelle discipline fisiche, in grado di dedicarsi validamente alla ricerca scientifica, alla didattica, oppure di inserirsi in un ambito lavorativo dove siano richieste elevate competenze per la comprensione e lo sviluppo di applicazioni della fisica nelle industrie, in alcuni ambiti della pubblica amministrazione o nei servizi.

Il CdLM fornisce allo studente approfondimenti disciplinari, che estendono e rafforzano le conoscenze acquisite nel percorso triennale, in settori specifici della fisica sia di base che più specialistici. Sono previsti approfondimenti anche per attività affini di tipo matematico e informatico.

Il corso nei diversi ambiti della Fisica (Astrofisica, Fisica Applicata, Fisica della Materia, Fisica Nucleare e Subnucleare, Fisica Teorica, Nuclear Phenomena and their Applications), prevede di attivare differenti curricula sulla base delle competenze scientifiche dei docenti del Dipartimento di Fisica e Astronomia, che da sempre operano in collaborazione ed in perfetta sinergia con i ricercatori degli Enti di Ricerca presenti sul territorio (INFN, LNS, INAF, CNR) in modo da consentire approfondimenti tematici sui più recenti sviluppi della fisica contemporanea.

Il programma degli studi magistrali prevede che lo studente acquisisca, in modo approfondito, conoscenze e metodologie relative a uno o più settori specifici della fisica e autonomia di studio, tramite un ampio lavoro di preparazione della prova finale.


Vengono utilizzati diversi strumenti per lo sviluppo delle conoscenze e delle competenze dello studente. Lo strumento fondamentale è costituito dalle lezioni in aula unite alle attività di esercitazioni, parte delle quali potranno essere svolte autonomamente dallo studente. Lo svolgimento di esercitazioni, approfondimenti individuali e di attività di laboratorio all'interno di molti degli insegnamenti previsti, favorisce l'acquisizione di maggiore autonomia e permette di affinare le capacità comunicative e di giudizio, oltre alle capacità di risolvere individualmente problemi. La presenza in alcuni insegnamenti di laboratori, con l'utilizzo di strumenti informatici e di software scientifico, sia all'interno di corsi di natura specificamente applicativo, che all'interno di corsi teorici, permetterà allo studente di acquisire competenze specifiche e di sperimentare, anche in modo autonomo, le applicazioni delle conoscenze acquisite. Lo studente verrà anche sollecitato ad acquisire un contatto diretto con la letteratura in ambito fisico, anche a livello di ricerca, e affinare le capacità individuali di orientarsi nella consultazione di testi e di articoli scientifici pubblicati su riviste sia italiane che straniere. La redazione autonoma della prova finale costituisce, inoltre, una verifica dell'acquisizione di queste competenze e della padronanza delle tecniche usuali della comunicazione scientifica in ambito fisico.

In sintesi, gli obiettivi formativi del corso di studi comprendono:

- lo sviluppo di capacità di studio e di apprendimento autonomi e della capacità di integrazione delle conoscenze;
- l'applicazione della capacità di comprensione e della capacità di soluzione di problemi a tematiche nuove o non familiari, inserite in ampi contesti lavorativi o di ricerca;
- lo sviluppo e la pratica della capacità di comunicare, in modo chiaro e privo di ambiguità, le conoscenze e i risultati conseguiti;
- solide basi per proseguire gli studi in dottorati di ricerca o master di secondo livello o scuole di specializzazione.

La preparazione della tesi di laurea costituisce un momento fondamentale del corso di laurea magistrale in Fisica, in cui lo studente, tramite la guida di uno o più docenti, approfondisce in maniera originale un tema di particolare interesse e attualità per la fisica o le sue applicazioni. La preparazione della tesi di laurea può comprendere un periodo presso imprese o enti esterni, gruppi e laboratori di ricerca dell'Ateneo o enti di ricerca, in Italia o all'estero. Per il ruolo fondamentale che riveste la tesi di laurea nella maturazione delle conoscenze e nella formazione delle competenze, viene riservato un elevato numero di crediti (30 -40 CFU) alla preparazione della prova finale.

I risultati dell'apprendimento vengono controllati durante il percorso mediante colloqui, prove scritte, prove pratiche e relazioni sull'attività svolta. Vengono infine verificati in maniera più ampia e organica nella valutazione e nella discussione della tesi di laurea.

Il laureato magistrale in fisica avrà:

 una comprensione critica degli sviluppi più avanzati della Fisica Moderna sia negli aspetti teorici che di laboratorio e delle loro interconnessioni, anche in campi interdisciplinari. Allo sviluppo di tali conoscenze concorrono attività formative caratterizzanti nei settori di Fisica. La loro verifica avviene essenzialmente attraverso prove orali di esame;

Conoscenza e capacità di comprensione

- una adeguata conoscenza degli strumenti matematici e informatici avanzati di uso corrente nei settori della ricerca di base e applicata. Tali strumenti sono acquisiti nelle discipline matematiche e informatiche integrative e in alcune attività caratterizzanti di Fisica. La loro acquisizione viene verificata nelle relative prove orali;
- una notevole padronanza del metodo scientifico, e comprensione della natura e dei procedimenti della ricerca in Fisica. Tali capacità, che son già presenti nel laureato in Fisica, vengono arricchite dal complesso degli insegnamenti specialistici del CLM.

Il laureato magistrale in fisica avrà:

- capacità di identificare gli elementi essenziali di un fenomeno, in termini di ordine di grandezza e di livello di approssimazione necessario, ed essere in grado di effettuare le approssimazioni richieste. Tale capacità viene verificata, in particolare, nelle prove d'esame e attraverso attività sperimentali nei laboratori specialistici;

Capacità di applicare conoscenza e comprensione

- capacità di utilizzare lo strumento della analogia per applicare soluzioni conosciute a problemi nuovi (problem solving). Tale capacità si acquisisce nello studio degli sviluppi della Fisica moderna e attraverso attività sperimentali nei laboratori specialistici,, ma può essere verificata essenzialmente nella prova finale:
- capacità di progettare e di mettere in atto procedure sperimentali e teoriche per risolvere problemi della ricerca accademica e industriale o per il miglioramento dei risultati esistenti. Tale capacità si acquisisce nelle attività formative caratterizzanti, anche attraverso attività sperimentali nei laboratori specialistici, e nel lavoro di tesi per la prova finale;
- capacità di utilizzo di strumenti di calcolo matematico analitico e numerico e delle tecnologie informatiche, incluso lo sviluppo di programmi software;
- abilità nello sviluppare approcci e metodi nuovi e originali. Tale abilità viene acquisita principalmente nella preparazione della tesi per la prova finale.

Formazione Fisica di base

Conoscenza e comprensione

Il laureato magistrale in Physics avrà

- una comprensione critica degli sviluppi più avanzati della Fisica Moderna sia negli aspetti teorici che di laboratorio e delle loro interconnessioni, anche in campi interdisciplinari. Allo sviluppo di tali conoscenze concorrono attività formative caratterizzanti nei vari settori della Fisica. La loro verifica avviene essenzialmente attraverso prove orali di esame, condotte individualmente;
- una adeguata conoscenza degli strumenti matematici e informatici avanzati di uso corrente nei settori della ricerca di base e applicata. Tali strumenti sono acquisiti in alcune attività affini e integrative e/o caratterizzanti di Fisica. La loro acquisizione viene verificata nelle relative prove orali;
- una notevole padronanza del metodo scientifico e della sua applicazione nella ricerca in Fisica, nei suoi diversi ambiti. Tale capacità, che è già presente nel laureato triennale in Fisica, viene arricchita dall' approfondimento di argomenti avanzati di Meccanica Quantistica e Meccanica Statistica, Struttura della Materia e Fisica Nucleare e dal complesso degli insegnamenti specialistici che, nelle loro specificità, costituiscono i curricula in cui il corso di laurea si articola.

Il lavoro di tesi, infine, costituisce la restante parte dell' impegno di studio, la cui verifica avviene durante l' esame finale di laurea

Al link https://www.dfa.unict.it/it/corsi/lm-17/curriculum-map è reperibile un documento che permette di verificare la convergenza tra i risultati di apprendimento attesi per il cds. Una volta definiti collegialmente i risultati di apprendimento per il Cds, ogni docente definisce i risultati di apprendimento per l'attività formativa che gli è stata affidata e verifica a quale o a quali risultati di apprendimento del Cds contribuisce. La visione d'insieme permette di verificare che tutti i risultati di apprendimento attesi per il Cds trovino effettivo riscontro in una o più attività formative.

Capacità di applicare conoscenza e comprensione

Il laureato magistrale in Physics avrà

- capacità di identificare gli elementi essenziali di un fenomeno, in termini di ordine di grandezza e di livello di approssimazione necessario, e sarà in grado di effettuare le approssimazioni richieste. Tale capacità viene verificata, in particolare, nelle prove d'esame;
- capacità di utilizzare lo strumento della analogia per applicare soluzioni conosciute a problemi nuovi (problem solving). Tale capacità si acquisisce nello studio degli sviluppi della Fisica moderna e può essere verificata essenzialmente nella prova finale;
- capacità di progettare e di mettere in atto procedure sperimentali e teoriche per risolvere problemi della ricerca accademica e industriale o per il miglioramento dei risultati esistenti. Tale capacità si acquisisce nelle attività formative caratterizzanti e nel lavoro di tesi per la prova finale;
- capacità di utilizzo di strumenti di calcolo matematico analitico e numerico e delle tecnologie informatiche, incluso lo sviluppo di programmi software. Tale capacità si acquisisce nelle discipline matematiche e informatiche integrative, in alcune attività caratterizzanti e nel lavoro di tesi per la prova finale;
- abilità nello sviluppare approcci e metodi nuovi e originali, spesso multidisciplinari e interdisciplinari. Tale abilità viene acquisita principalmente nella preparazione della tesi per la prova finale.

Lo sviluppo di queste capacità avviene attraverso un bilanciamento tra contenuti generali ed esempi di applicazioni, l'insegnamento frontale, lo studio individuale, le esercitazioni in aula e nei laboratori.

Il Corso di Laurea Magistrale quindi, oltre che fornire agli studenti conoscenze specialistiche nei settori della fisica, si propone anche di accrescere la capacità di applicarle in contesti differenti, più ampi e interdisciplinari. Gli strumenti metodologici vengono forniti sia con gli insegnamenti comuni che con quelli specifici dei diversi curricula, consentendo allo studente l' acquisizione delle conoscenze necessarie per affrontare il lavoro di tesi. La verifica del grado di apprendimento e di comprensione viene eseguita tramite prove orali e scritte; il grado di maturità scientifica, la capacità di problem solving, di presentare risultati e di sostenere una discussione scientifica, sono valutate durante la stesura della tesi e durante la discussione della prova finale.

Il documento presente al link https://www.dfa.unict.it/it/corsi/lm-17/curriculum-map permette di verificare la convergenza tra i risultati di apprendimento attesi per la singola attività formativa e i risultati di apprendimento attesi per il CdS.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Area di apprendimento ASTROPHYSICS

Conoscenza e comprensione

Il curriculum di Astrophysics del Corso di Laurea Magistrale Internazionale in Physics, propone agli studenti l'approfondimento specialistico, teorico e sperimentale, di diversi argomenti di astronomia e astrofisica, dalla fisica solare a quella galattica ed extra-galattica. Le attività formative, per la parte sperimentale/osservativa, riguardano le tecniche di indagine basate sulla acquisizione e analisi della radiazione usate in Astrofisica; mentre per la parte teorica, si approfondiscono i concetti relativi alle interazioni gravitazionali, radiazione - materia e plasmi-campi magnetici.

Le conoscenze in quest'area riguardano l'approfondimento specialistico in alcuni settori particolari, quali:

- processi fisici nel Sole e relazioni Sole-Terra
- processi fisici di base nei plasmi spaziali; interazione plasmi campi magnetici
- processi fisici legati alla formazione degli spettri
- proprietà fisiche del mezzo interstellare, formazione stellare
- proprietà fisiche delle stelle: struttura interna, atmosfera, evoluzione
- proprietà fisiche e dinamiche della Galassia e delle galassie
- argomenti di relatività generale e di cosmologia
- processi fisici associati alla propagazione dei raggi cosmici
- studio dei fenomeni osservati nel campo delle onde radio
- strumentazione e tecnologie utilizzate in campo astrofisico
- software di analisi dati per lo studio degli spettri stellari, delle strutture magnetiche nell' atmosfera solare e per applicazioni relative alla ricerca di pianeti extra-solari.

La comprensione di questi argomenti è garantita da un' ampia offerta di insegnamenti, erogati sia mediante lezioni frontali che mediante esperienze in laboratori specializzati o presso telescopi e radiotelescopi, oltre a molteplici attività seminariali ed eventuali periodi di stage all'estero nell'ambito di accordi Erasmus. I metodi di verifica si basano su prove individuali, orali e/o scritte e di laboratorio e sul lavoro di tesi.

Capacità di applicare conoscenza e comprensione

Gli strumenti metodologici acquisiti durante la frequenza dei corsi del Curriculum di Astrophysics e le esperienze acquisite nei laboratori specializzati e presso le sedi osservative (telescopi solari, stellari e radiotelescopi) possono essere applicati ad ambiti legati alla fisica teorica, sperimentale e osservativa concernenti diversi processi astrofisici, oltre che ad applicazioni nell'ambito della tecnologia di infrastrutture di terra e spaziali.

Verrà inoltre acquisita la capacità di analizzare grandi quantità di dati (big data analysis) e di modellizzare sistemi

complessi e fenomeni stocastici.

L'acquisizione di tali capacità viene verificata attraverso gli esami scritti e orali, le prove di laboratorio e soprattutto attraverso il lavoro di tesi.

Gli obiettivi formativi del curriculum Astrophysics, pur garantendo una preparazione di base in Fisica, con conseguente possibilità di trovare impiego presso enti di ricerca, aziende o enti pubblici che possono avvalersi delle competenze di un Fisico, assicurano altresì ai laureati che hanno frequentato questo Curriculum capacità e competenze tali da svolgere attività di ricerca nel campo dell'Astrofisica e prestare servizio presso enti pubblici, quali l'Istituto Nazionale di Astrofisica, l'Agenzia Spaziale Italiana, l'European Space Agency, l'Istituto Nazionale di Fisica Nucleare e/o presso enti privati operanti nel settore aero-spaziale.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Visualizza Insegnamenti

Chiudi Insegnamenti

ADVANCED QUANTUM MECHANICS url

ADVANCED STATISTICAL MECHANICS url

ASTROPARTICLE PHYSICS url

ASTROPHYSICS url

ASTROPHYSICS LABORATORY url

COSMIC RAY PHYSICS url

EXTRAGALACTIC ASTRONOMY AND COSMOLOGY url

GENERAL RELATIVITY url

HIGH ENERGY ASTROPHYSICS url

MAGNETOHYDRODYNAMICS AND PLASMA PHYSICS url

NUCLEAR ASTROPHYSICS url

PLASMA SPECTROSCOPY url

RADIOASTRONOMY url

SOLAR PHYSICS url

Area di apprendimento APPLIED PHYSICS

Conoscenza e comprensione

Il curriculum di Applied Physics si propone la formazione di laureati che abbiano conoscenze tali da poter ricoprire ruoli per i quali sia richiesta la capacità di applicazione e sviluppo delle principali metodologie fisiche nel mondo produttivo, in laboratori specializzati ed enti, sia pubblici che privati nonché Università e Centri di ricerca sia in Italia che all'estero. L'obiettivo principale è quello di assicurare ai laureati una solida preparazione sui principi fisici alla base delle applicazioni con particolare riferimento, oltre che ai concetti fondamentali, alla strumentazione e alle metodologie di analisi e indagine.

La struttura del curriculum è tale da garantire agli studenti una solida preparazione culturale della fisica classica e della fisica moderna e una buona padronanza del metodo d'indagine scientifico, oltre che un'approfondita conoscenza delle moderne strumentazioni di misura e delle tecniche più avanzate di analisi dei dati nonché dei principali strumenti matematici e informatici di supporto.

Tali competenze possono trovare applicazione in ambito ambientale, biologico, medico e dei beni culturali. Ulteriori conoscenze verranno fornite in ambito informatico ed elettronico per completare il corredo di competenze spendibile in diversi contesti lavorativi.

Nell'ambito della Fisica applicata alla Biologia, vengono approfonditi i moderni metodi di indagine biofisica basati sulla spettroscopia e microscopia a fluorescenza (microscopia confocale e a super-risoluzione, tecniche FLIM, FRET e FCS) e la loro applicazione allo studio della cellula come sistema fisico complesso.

Una conoscenza approfondita nel campo della modellistica, della strumentazione, della realizzazione delle misure e dell'analisi dei dati per applicazioni di interesse nel campo dei Beni Culturali è garantita da appositi insegnamenti con contenuti relativi ai principi fisici di base delle metodologie fisiche applicate al patrimonio culturale. Svolge in quest'ambito un ruolo importante la possibilità di disporre delle competenze e della strumentazione di laboratori di ricerca che operano nel settore dell'Archeometria, caratterizzato da una particolare competenza in metodi di datazione assoluta e tecniche diagnostiche di caratterizzazione di interesse sia per la conservazione che per il restauro e la valorizzazione di opere d'arte sia mobili che immobili.

Approfondite conoscenze e competenze vengono acquisite sulle differenti tematiche relative alla radioattività ambientale e alla fisica medica attraverso la fruizione di laboratori didattici e di ricerca, dotati di strumentazione avanzata per indagini in ambito dosimetrico per fasci di radiazione utilizzate in diagnostica e in terapia nonché l'utilizzo di software di simulazione per la modellizzazione degli scenari di riferimento per lo studio degli effetti biologici delle radiazioni.

La comprensione di tutti gli argomenti citati è garantita da un'ampia offerta di insegnamenti, erogati sia mediante lezioni frontali che mediante esperienze in laboratori specializzati, oltre a molteplici attività seminariali e periodi di stage sia in Italia che all'estero nell'ambito di tirocini e accordi Erasmus. I metodi di verifica si basano su prove individuali, orali e/o scritte e di attività di laboratorio. Particolare importanza riveste il lavoro di tesi, quasi esclusivamente sperimentale, spesso realizzato nell'ambito di specifiche convenzioni con enti pubblici e aziende private.

Capacità di applicare conoscenza e comprensione

Gli studenti devono dimostrarsi capaci di applicare le loro conoscenze e capacità di comprensione dei concetti principali appresi nell'ambito della Fisica Applicata, dimostrando di padroneggiare sia questioni legate alla fisica di base, che le metodologie sperimentali su di esse basate soprattutto in relazione alle specifiche applicazioni e agli obiettivi correlati. Ciò al fine di garantire un approccio scientifico di elevata qualificazione, sfruttabile nell'ambito della ricerca sia pubblica che privata nei settori della fisica applicata soprattutto ai Beni Culturali e alla Biomedicina. Un obiettivo specifico è quello di apprendere a lavorare in ambiti multidisciplinari.

Gli obiettivi formativi del curriculum in Fisica Applicata per l'ambito della diagnostica dei Beni Culturali e delle metodologie di caratterizzazione e datazione tipiche dei materiali di interesse per il patrimonio artistico, assicurano ai laureati capacità tali da svolgere attività di ricerca in campo archeometrico e competenze necessarie per prestare servizio presso Musei, Soprintendenze ed enti pubblici e privati operanti nel settore.

Gli obiettivi formativi del curriculum in Fisica Applicata per l'ambito bio-medicale permettono agli studenti di caratterizzare la propria preparazione in modo da svolgere attività di ricerca nel campo medico e biomedico nonché per lavorare nelle industrie biomediche, nelle agenzie pubbliche e nelle aziende private di controllo sanitario e normativo. Le conoscenze sono in tal senso tali da garantire ai laureati la preparazione necessaria per affrontare le prove richieste per l'accesso all'Albo degli Esperti di Radioprotezione e l'esame di ammissione alla Scuola di Specializzazione in Fisica Medica, titolo necessario per prestare servizio come dirigente fisico presso le strutture sanitarie.

L'acquisizione delle varie capacità viene verificata attraverso gli esami scritti e orali, le prove di laboratorio e soprattutto attraverso il lavoro di tesi.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Visualizza Insegnamenti

Chiudi Insegnamenti

ACCELERATOR PHYSICS AND APPLICATIONS url

ADVANCED NUCLEAR TECHNIQUES APPLIED TO MEDICINE url

ADVANCED QUANTUM MECHANICS url

ARCHAEOMETRY url

BIOPHYSICS url

ELECTRONICS AND APPLICATIONS url

ENVIRONMENTAL RADIOACTIVITY url

IMAGE ANALYSIS AND FUNDAMENTALS OF DOSIMETRY url

MACHINE LEARNING FOR PHYSICS url
MEDICAL PHYSICS url
NUCLEAR AND PARTICLE PHYSICS II url
NUCLEAR AND PARTICLE PHYSICS LABORATORY url
SOLID-STATE PHYSICS url
SPECTROSCOPY url

Area di apprendimento CONDENSED MATTER PHYSICS

Conoscenza e comprensione

Il curriculum di Condensed Matter Physics propone agli studenti l'approfondimento specialistico, teorico e sperimentale, della fisica della materia condensata nelle sue varie forme, dalla fisica atomica a quella dello stato solido e delle nanotecnologie. Le attività formative, per la parte sperimentale, riguardano lo studio delle differenti metodologie di sintesi e processo dei materiali, delle tecniche avanzate di caratterizzazione strutturale e spettroscopica (ottica, elettrica ed elettrochimica), la modellizzazione di processi semplici e larealizzazione di dispositivi prototipali. L'approfondimento specialistico teorico è focalizzato su differenti aspetti della fisica degli stati condensati, sull'interazione radiazione-materia e sulle tecnologie quantistiche.

Le conoscenze in quest'area riguardano l'approfondimento specialistico in alcuni settori particolari, quali:

- Fisica delle nanostrutture: sintesi e caratterizzazione di nanocristalli metallici e semiconduttori e di nanofili per applicazioni nel campo dell'energetica, della fotonica,, della catalisi e della sensoristica;
- Dinamica quantistica di sistemi aperti; Controllo quantistico e de-coerenza in nano sistemi;
- Computazione e comunicazione quantistica;
- Nuovi materiali: sintesi e caratterizzazione di film per la realizzazione di amplificatori ottici;
- Crescita di materiali bidimensionali (grafene, X-ene, BN, ...) e studio delle proprietà elettroniche e ottiche;
- Materiali per la microelettronica a base Si, Ge, SiC e GaN;
- Tecnologie Quantistiche: fisica della computazione e della comunicazione quantistica;
- Nanosistemi coerenti e loro dinamica: controllo quantistico e transizioni di fase.

La comprensione di questi argomenti è garantita da un'ampia offerta di insegnamenti, erogati sia mediante lezioni frontali che mediante esperienze in laboratori specializzati. I metodi di verifica si basano su prove individuali, orali e di laboratorio e sul lavoro di tesi.

Capacità di applicare conoscenza e comprensione

Gli studenti devono dimostrarsi capaci di applicare le loro conoscenze e capacità di comprensione dei principali risultati della Fisica della Materia Condensata e delle Nanotecnologie, dimostrando di padroneggiare questioni legate alla fisica di base fino alle applicazioni tecnologiche da esse derivate. Ciò al fine di garantire un approccio scientifico di elevato livello sfruttabile nell'ambito della ricerca sia pubblica che privata nei settori delle nano- e bio-tecnologie e in quello della fisica dei materiali innovativi. In particolare, gli studenti devono essere in grado di progettare e realizzare nuovi esperimenti e sviluppare modelli teorici avanzati per la descrizione dei fenomeni.

L'acquisizione di tali capacità viene verificata attraverso gli esami scritti e orali, le prove di laboratorio e soprattutto attraverso il lavoro di tesi.

Gli obiettivi formativi del curriculum "Condensed Matter Physics", pur garantendo una preparazione di base in Fisica, con conseguente possibilità di trovare impiego presso enti di ricerca, aziende o enti pubblici che possono avvalersi delle competenze di un Fisico, assicurano altresì ai laureati che hanno frequentato questo Curriculum capacità e competenze tali da svolgere attività di ricerca nel campo della Fisica dei Materiali e dei dispositivi a stato solido e prestare servizio presso enti pubblici, quali il Consiglio Nazionale delle Ricerche, Ilstituto Nazionale di Fisica Nucleare e/o presso aziende private operanti nel settore della microelettronica, Internet of Things e Transizione ecologica.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Visualizza Insegnamenti

Chiudi Insegnamenti

ADVANCED QUANTUM MECHANICS url

ADVANCED STATISTICAL MECHANICS url

COMPUTATIONAL QUANTUM OPTICS url

MANY-BODY THEORY url

MATERIALS AND NANOSTRUCTURES LABORATORY url

MESOSCOPIC AND TOPOLOGICAL MATERIALS url

PHOTONICS url

PHYSICS AND TECHNOLOGY OF MATERIALS url

PHYSICS AND TECHNOLOGY OF TWO-DIMENSIONAL MATERIALS AND DEVICES url

PHYSICS OF NANOSTRUCTURES url

QUANTUM INFORMATION AND FOUNDATIONS url

QUANTUM PHASES OF MATTER url

SEMICONDUCTOR PHYSICS AND TECHNOLOGY url

SOLID-STATE PHYSICS url

SPECTROSCOPY url

SUPERCONDUCTIVITY AND SUPERFLUIDITY url

Area di apprendimento NUCLEAR AND PARTICLE PHYSICS

Conoscenza e comprensione

Il curriculum di Nuclear and Particle Physics propone agli studenti l'approfondimento specialistico, teorico e sperimentale, della Fisica delle interazioni fondamentali delle particelle elementari e dei nuclei. Le attività formative, per la parte sperimentale, riguardano tutte le fasi che caratterizzano la vita di un esperimento di Fisica Nucleare o Subnucleare: studio dei dispositivi per la rivelazione delle particelle, progettazione degli esperimenti attraverso studi di fattibilità e simulazioni Monte Carlo delle principali interazioni che si intendono studiare, messa in opera e successivi test e calibrazione degli apparati sperimentali, utilizzo delle tecniche di acquisizione e analisi dati.

Per la parte teorica, la formazione è finalizzata a una approfondita conoscenza del Modello Standard delle Interazioni fondamentali e dei principali fondamenti teorici della Fisica Nucleare.

La comprensione di questi argomenti è garantita da un'ampia offerta di insegnamenti, con lezioni frontali e laboratori avanzati, e inoltre da attività seminariali ed eventuali periodi di stage nell'ambito di accordi Erasmus e, più in generale, di partnership internazionali. L'attività di tesi è spesso inquadrata nell'ambito di collaborazioni internazionali in sinergia con l'INFN.

I metodi di verifica si basano su prove individuali, orali e/o scritte e di laboratorio e sul lavoro di tesi.

Capacità di applicare conoscenza e comprensione

Gli studenti devono dimostrare di essere capaci di applicare le loro conoscenze e capacità di comprensione dei principali risultati della Fisica Nucleare e Subnucleare, così da garantire un approccio professionale e scientifico di alto livello al loro lavoro. In particolare, gli studenti devono essere in grado di prendere parte attivamente alla progettazione ed alla realizzazione di nuovi esperimenti e/o apparati, di utilizzare ed implementare modelli teorici avanzati per la descrizione dei fenomeni (anche attraverso l'ausilio di tecniche numeriche) e di trattare e analizzare dati di notevole complessità.

L'acquisizione di tali capacità viene verificata attraverso gli esami scritti e orali, le prove di laboratorio e soprattutto attraverso il lavoro di tesi.

Gli obiettivi formativi del curriculum Nuclear and Particle Physics, pur garantendo una preparazione di base in Fisica, con conseguente possibilità di trovare impiego presso enti di ricerca, aziende o enti pubblici che possono avvalersi delle competenze di un Fisico, assicurano altresì ai laureati che hanno frequentato questo Curriculum capacità e competenze tali da consentire loro di accedere, a seconda dei casi in modo diretto oppure attraverso ulteriori livelli di

formazione o abilitazione, ad un'ampia gamma di ambiti occupazionali e professionali, sia nell'ambito pubblico che privato. Si indicano, in particolare:

- la ricerca fondamentale e applicata presso università ed enti di ricerca pubblici e privati a vari livelli, dopo il completamento della necessaria formazione di tipo dottorale. Nel contesto italiano si fa riferimento, ad esempio, a sbocchi lavorativi presso enti pubblici come INFN, INAF, INGV, CNR, ENEA;
- lo sviluppo di software per l'analisi di sistemi complessi in centri di calcolo privati o della pubblica amministrazione;
- le applicazioni della fisica nel campo della medicina, all'interno di varie strutture sanitarie (dopo aver conseguito la specializzazione in Fisica Medica);
- lo sviluppo dell'innovazione scientifica e tecnologica in ambiti correlati con le discipline fisiche (industria elettronica, telecomunicazioni, informatica, ambiente, tecnologie per la produzione energetica, sanità, beni culturali).

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Visualizza Insegnamenti

Chiudi Insegnamenti

ADVANCED QUANTUM MECHANICS url

ASTROPARTICLE PHYSICS url

DATA ANALYSIS TECHNIQUES FOR NUCLEAR AND PARTICLE PHYSICS url

ELEMENTARY PARTICLE PHYSICS I (modulo di ELEMENTARY PARTICLE PHYSICS) url

ELEMENTARY PARTICLE PHYSICS II (modulo di ELEMENTARY PARTICLE PHYSICS) url

EXPERIMENTAL METHODS FOR NUCLEAR PHYSICS url

EXPERIMENTAL METHODS FOR PARTICLE PHYSICS url

HEAVY IONS PHYSICS (modulo di HEAVY IONS PHYSICS AT INTERMEDIATE AND HIGH ENERGY) url

HEAVY IONS PHYSICS AT INTERMEDIATE AND HIGH ENERGY url

HIGH ENERGY PHYSICS (modulo di HEAVY IONS PHYSICS AT INTERMEDIATE AND HIGH ENERGY) url

NUCLEAR AND PARTICLE PHYSICS I (modulo di NUCLEAR AND PARTICLE PHYSICS) url

NUCLEAR AND PARTICLE PHYSICS II (modulo di NUCLEAR AND PARTICLE PHYSICS) url

NUCLEAR AND PARTICLE PHYSICS LABORATORY url

NUCLEAR ASTROPHYSICS url

NUCLEAR REACTION THEORY url

NUCLEAR STRUCTURE url

QUANTUM FIELD THEORY - I url

SOLID-STATE PHYSICS url

THEORY OF STRONG INTERACTIONS url

Area di apprendimento THEORETICAL PHYSICS

Conoscenza e comprensione

Il curriculum di Theoretical Physics propone agli studenti l'approfondimento specialistico, teorico, metodologico e computazionale della Fisica teorica delle interazioni fondamentali, dei sistemi complessi e della fisica nucleare e subnucleare. Le attività formative mirano a impartire un'approfondita conoscenza della teoria quantistica dei campi, dei sistemi a molti corpi, della relatività generale e dei principali risultati della fisica statistica e dei sistemi complessi. La comprensione di questi argomenti è garantita da una variegata offerta di insegnamenti di lezioni frontali con esercitazioni, oltre a molteplici attività seminariali ed eventuali periodi di stage all'estero nell'ambito di accordi Erasmus.

I metodi di verifica si basano su prove individuali, orali e/o scritte e sul lavoro di tesi.

Capacità di applicare conoscenza e comprensione

Gli studenti devono dimostrare di essere capaci di applicare le loro conoscenze e capacità di comprensione dei principali risultati della Fisica teorica, così da garantire un approccio professionale e scientifico di alto livello al loro lavoro. In particolare gli studenti devono essere in grado di capire e sviluppare modelli teorici avanzati per la descrizione di fenomeni fisici complessi con ricadute spesso interdisciplinari, anche attraverso l'ausilio di tecniche di calcolo e approcci di tipo numerico. L'acquisizione di tali capacità viene verificata attraverso gli esami scritti e orali e soprattutto attraverso il lavoro di tesi.

Gli obiettivi formativi del curriculum di Theoretical Physics, pur garantendo una preparazione di base in Fisica, con conseguente possibilità di trovare impiego presso enti di ricerca, aziende o enti pubblici che possono avvalersi delle competenze di un Fisico, assicurano altresì ai laureati che hanno frequentato questo Curriculum capacità e competenze tali da svolgere attività di ricerca nel campo della fisica teorica e dei sistemi complessi e prestare servizio presso enti di ricerca pubblici, quali l'Istituto l'Istituto Nazionale di Fisica Nucleare e/o presso enti privati, aziende di consulting, piccole e medie industrie, banche ed assicurazioni.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Visualizza Insegnamenti

Chiudi Insegnamenti

ADVANCED QUANTUM MECHANICS url

ADVANCED STATISTICAL MECHANICS url

GENERAL RELATIVITY url

MACHINE LEARNING FOR PHYSICS url

MANY-BODY THEORY url

NUCLEAR AND PARTICLE PHYSICS II url

NUCLEAR REACTION THEORY url

PHYSICS OF COMPLEX SYSTEMS url

QUANTUM FIELD THEORY - I url

QUANTUM FIELD THEORY -II url

QUANTUM PHASES OF MATTER url

SOLID-STATE PHYSICS url

STANDARD MODEL THEORY url

SUPERCONDUCTIVITY AND SUPERFLUIDITY url

THEORY OF STRONG INTERACTIONS url

Area di apprendimento NUCLEAR PHENOMENA AND THEIR APPLICATIONS

Conoscenza e comprensione

Questo curriculum è incluso nel Master di 2 anni "Erasmus Mundus Joint Master Degree programme in Nuclear Physics". Il Master è proposto da un consorzio di 8 università partner in Spagna, Francia e Italia, con la partecipazione di 16 istituti /enti di ricerca come partner associati in Spagna, Francia, Italia, Germania e Svizzera (CERN). L'obiettivo principale del programma è quello di fornire agli studenti un'eccellente formazione in Fisica Nucleare e nelle sue molteplici applicazioni e promuovere la loro futura carriera in questo campo. Allo stesso tempo, gli studenti effettuano gli studi del Master in almeno 3 paesi, in un ambiente internazionale stimolante e scientificamente eccellente.

Il programma offre un ottimo livello di formazione in tutti i rami della Fisica Nucleare, compresi i programmi teorici, sperimentali e applicativi. Gli argomenti principali del Master sono:

- Nuclear Structure
- Nuclear Reactions
- Experimental Nuclear Physics
- Nuclear Astrophysics
- Nuclear Physics Applications for Therapy
- Nuclear Physics Applications in Small Accelerators
- Nuclear Physics Applications to Archaeometry
- Nuclear Methods applied in environmental investigation
- Nuclear Instrumentation
- Experiments in Large Accelerators

L'obiettivo del curriculum è duplice: in primo luogo, formare specialisti ben preparati per entrare nell'industria in uno dei settori sopra menzionati; in secondo luogo, formare studenti in grado di sviluppare programmi di ricerca e conseguire il loro dottorato di ricerca nel campo della Fisica Nucleare.

Capacità di applicare conoscenza e comprensione

Gli studenti devono dimostrare di essere in grado di applicare le proprie conoscenze e comprensione delle competenze agli aspetti principali dei settori sopra menzionati in modo da garantire un elevato livello di approccio professionale e scientifico al proprio lavoro. In particolare, gli studenti dovrebbero essere in grado di partecipare attivamente allo sviluppo e all'implementazione di un nuovo programma di ricerca sia dal punto di vista teorico che sperimentale.

L'acquisizione di tali capacità viene verificata attraverso gli esami, le prove di laboratorio e soprattutto attraverso il lavoro di tesi.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Visualizza Insegnamenti

Chiudi Insegnamenti

ACCELERATOR PHYSICS AND APPLICATIONS url

ADVANCED NUCLEAR TECHNIQUES APPLIED TO MEDICINE url

ARCHAEOMETRY url

ATOMIC AND PLASMA PHYSICS url

BASIC EXPERIMENTAL AND APPLIED LABORATORY url

BASIC NUCLEAR PHYSICS url

COMMON ADVANCED COURSE url

COMPUTING AND NUMERICAL METHODS url

ENVIRONMENTAL RADIOACTIVITY url

MEDICAL PHYSICS url

NUCLEAR ASTROPHYSICS url

NUCLEAR REACTION THEORY url

QUANTUM MECHANICS url

Autonomia di giudizio Abilità comunicative Capacità di apprendimento

Autonomia di giudizio

Il laureato magistrale in fisica avrà

- capacità di lavorare con crescenti gradi di autonomia, anche assumendo responsabilità nella programmazione e nella gestione di progetti. Questa capacità viene sviluppata e verificata nel corso del lavoro di tesi;
- consapevolezza dei problemi di sicurezza nell'attività di laboratorio. Essa viene acquisita e verificata nei corsi di laboratorio, i quali, nel corso magistrale, presentano aspetti di maggiore complessità rispetto al corso triennale; -capacità di argomentare personali interpretazioni di fenomeni fisici
- -capacità di argomentare personali interpretazioni di fenomeni fisici, confrontandosi nell' ambito di gruppi di lavoro;
- sviluppo del senso di responsabilità attraverso la scelta dei corsi opzionali e dell'argomento della tesi di laurea.

Abilità comunicative

Il laureato magistrale in fisica sarà in grado di:

- comunicare in lingua italiana e in lingua inglese nei settori avanzati della Fisica. Tale capacità viene acquisita attraverso lo studio di testi avanzati, spesso in inglese e viene verificata sia nelle prove orali d'esame che nella preparazione di tesine di esame e della tesi di laurea;
- presentare una propria attività di ricerca o di rassegna a un pubblico di specialisti o di profani. Tale capacità viene verificata essenzialmente nel corso della prova finale;
- lavorare in un gruppo interdisciplinare, adeguando le modalità di espressione a interlocutori di diversa cultura. Questa capacità viene acquisita e verificata fondamentalmente durante la preparazione della tesi di laurea.

Capacità di apprendimento

Il laureato magistrale in fisica avrà acquisito durante il ciclo di studi, e principalmente durante il lavoro di tesi, adeguati strumenti conoscitivi per l'aggiornamento continuo delle conoscenze, insieme una capacità di accedere alla letteratura specializzata sia nel campo prescelto che in campi scientificamente vicini.

Potrà proseguire i propri studi con ampia autonomia, approfondendo le proprie conoscenze a livello specialistico per l'eventuale inizio di successive attività di ricerca teorica o applicata, come, ad esempio, di un dottorato di ricerca o di un master di II livello, affrontando in modo autonomo lo studio sistematico di settori della fisica anche non precedentemente privilegiati.

Potrà utilizzare banche dati e risorse bibliografiche e scientifiche per estrarne informazioni e spunti atti a meglio inquadrare e sviluppare il proprio lavoro di studio e di ricerca.

Nel corso del lavoro di tesi lo studente avrà anche acquisito la capacità di affrontare nuovi campi attraverso uno studio autonomo, in virtù di una solida formazione di base.

Queste capacità sono in particolare verificate a livello della prova finale.

QUADRO A5.a

Caratteristiche della prova finale

06/02/2019

La prova finale per il conseguimento della Laurea Magistrale in Fisica consiste nella presentazione e discussione, di fronte alla Commissione di Laurea, durante la seduta di esame finale di laurea, di un elaborato (Tesi) preparato sotto la guida di un docente scelto come Relatore. Tale elaborato consiste in una relazione scritta su di uno studio originale, teorico o sperimentale, di specifico interesse nei campi della Fisica e delle sue applicazioni. Il lavoro può essere svolto anche al di fuori del Dipartimento di Fisica e Astronomia presso aziende, strutture e laboratori sia pubblici che privati in Italia e all'estero. Il relatore può scegliere di essere coadiuvato da uno o più correlatori che possono appartenere ad altri atenei, anche esteri, o ad enti di ricerca sia pubblici che privati.

Le modalità di svolgimento dell'esame e i criteri per la definizione del voto di laurea vengono regolati da un apposito regolamento dell'esame di laurea disponibile on-line sul sito del corso di laurea.

Modalità di svolgimento della prova finale

23/04/2021

La prova finale della Laurea Magistrale in Physics consiste nella discussione, di fronte a una commissione appositamente costituita, durante un esame di laurea, di un elaborato (Tesi) di norma preparato sotto la guida di un docente di questo Ateneo scelto come Relatore. La commissione è costituita di norma da docenti afferenti al Dipartimento di Fisica e Astronomia, ma possono farne parte anche docenti di altri Dipartimenti o anche altri Atenei in caso di tesi svolte in collaborazione con docenti o strutture di altri Dipartimenti o Atenei e/o su argomenti interdisciplinari.

L'elaborato consiste in una relazione scritta su di uno studio originale, teorico o sperimentale, di specifico interesse nei campi della Fisica e delle sue applicazioni. Il lavoro può essere svolto anche al di fuori del Dipartimento di Fisica e Astronomia presso aziende, strutture e laboratori sia pubblici che privati, in Italia e all'estero. Il relatore può scegliere di essere coadiuvato da uno o più correlatori che possono appartenere ad altri atenei, anche esteri, o a enti di ricerca sia pubblici che privati. Le modalità di svolgimento dell'esame e il voto finale di Laurea, espresso in centodecimi, vengono regolate da un apposito regolamento dell'esame di laurea disponibile on-line sul sito del corso di laurea.

Per gli studenti con disabilità certificata (superiore al 66%) o con DSA certificati ai sensi della L.170/2010, sentito il parere del CInAP (Centro Integrazione Attiva e Partecipata) di UNICT, sarà previsto un maggior tempo rispettivamente del 50% e del 30% per il consequimento del Diploma di laurea. La verifica del possesso dei requisiti previsti dalle vigenti normative

potrà avvenire con il contatto diretto con i Docenti Referenti di Dipartimento o con gli Operatori del CInAP.

Per il curriculum in ambito ERASMUS MUNDUS la tesi sarà preparata sotto la guida di uno o più docenti di una o più università partners e l'esame finale di laurea sarà sostenuto di fronte a una commissione che avrà anche componenti esterni degli atenei partners e potrà svolgersi in una delle sedi consorziate, così come previsto dal Consortium Agreement.

Al superamento della prova finale allo studente vengono attribuiti 40 CFU articolati in un corso integrato di 30 CFU per attività di ricerca per la preparazione del lavoro di tesi e 10 CFU per la stesura dell'elaborato finale. Allo studente che svolgerà, in tutto o in parte, il lavoro di ricerca tesi all'estero verranno attribuiti 5 CFU per ogni mese di permanenza fino ad un massimo di 6 mesi. Le opzioni possibili fra cui lo studente potrà scegliere sono:

- -10 CFU di stesura tesi ed esame finale + 30 CFU ricerca tesi DFA
- -10 CFU di stesura tesi ed esame finale + 5 CFU ricerca tesi estero + 25 CFU ricerca tesi DFA
- -10 CFU di stesura tesi ed esame finale + 10 CFU ricerca tesi estero + 20 CFU ricerca tesi DFA
- -10 CFU di stesura tesi ed esame finale + 15CFU ricerca tesi estero + 15 CFU ricerca tesi DFA
- -10 CFU di stesura tesi ed esame finale + 20 CFU ricerca tesi estero + 10 CFU ricerca tesi DFA
- -10 CFU di stesura tesi ed esame finale + 25 CFU ricerca tesi estero + 5 CFU ricerca tesi DFA
- -10 CFU di stesura tesi ed esame finale + 30 CFU ricerca tesi estero.

Inoltre, allo studente che svolgerà, in tutto o in parte, il lavoro di ricerca tesi effettuando uno stage presso un ente di ricerca o una azienda convenzionati con l'Università di Catania, verranno attribuiti 5 CFU per ogni mese di stage fino ad un massimo di 6 mesi. Le opzioni possibili fra cui lo studente potrà scegliere sono equivalenti a quelle indicate nello schema precedente, sostituendo le parole 'ricerca tesi estero' con la parola 'stage'.

Dopo qualche settimana dal conseguimento del titolo, si svolge il **Graduation Day**, cerimonia di proclamazione con la consegna della pergamena di laurea.

Link: https://www.dfa.unict.it/corsi/lm-17/esami-di-laurea-lm-17 (Esami di Laurea LM17)

Pdf inserito: visualizza

Descrizione Pdf: Regolamento Esame di Laurea Magistrale

QUADRO B1

Descrizione del percorso di formazione (Regolamento Didattico del Corso)

Link: http://www.dfa.unict.it/corsi/lm-17/regolamento-didattico

QUADRO B2.a

Calendario del Corso di Studio e orario delle attività formative

http://www.dfa.unict.it/it/corsi/lm-17/calendario-didattico

QUADRO B2.b

Calendario degli esami di profitto

http://www.dfa.unict.it/corsi/LM-17/esami

QUADRO B2.c

Calendario sessioni della Prova finale

https://www.dfa.unict.it/corsi/lm-17/esami-di-laurea-lm-17

QUADRO B3

Docenti titolari di insegnamento

Sono garantiti i collegamenti informatici alle pagine del portale di ateneo dedicate a queste informazioni.

N.	Settori	Anno di corso	Insegnamento	Cognome Nome	Ruolo	Crediti	Ore	Docente di riferimento per corso
1.	FIS/07	Anno di corso 1	ACCELERATOR PHYSICS AND APPLICATIONS link			6		
2.	FIS/07	Anno di corso 1	ACCELERATOR PHYSICS AND APPLICATIONS link	MASCALI DAVID		6	42	
3.	FIS/01	Anno di corso 1	ADVANCED NUCLEAR TECHNIQUES APPLIED TO MEDICINE link	RUSSO GIORGIO		6	42	
4.	FIS/01	Anno di corso 1	ADVANCED NUCLEAR TECHNIQUES APPLIED TO MEDICINE link			6		
5.	FIS/02	Anno di corso 1	ADVANCED QUANTUM MECHANICS <u>link</u>			6		
6.	FIS/02	Anno di corso 1	ADVANCED QUANTUM MECHANICS <u>link</u>	GRECO VINCENZO	РО	6	50	~
7.	FIS/02	Anno di corso 1	ADVANCED QUANTUM MECHANICS <u>link</u>			6		
8.	FIS/02	Anno di corso 1	ADVANCED QUANTUM MECHANICS <u>link</u>			6		
9.	FIS/02	Anno di corso 1	ADVANCED QUANTUM MECHANICS <u>link</u>			6		
10.	FIS/02	Anno di corso 1	ADVANCED STATISTICAL MECHANICS link			6		
11.	FIS/02	Anno di corso 1	ADVANCED STATISTICAL MECHANICS link	RAPISARDA ANDREA	PA	6	50	V
12.	FIS/02	Anno di corso 1	ADVANCED STATISTICAL MECHANICS link			6		
13.	FIS/07	Anno di corso 1	ARCHAEOMETRY <u>link</u>			6		

14.	FIS/07	Anno di corso 1	ARCHAEOMETRY <u>link</u>	GUELI ANNA MARIA	PA	6	21	<u>~</u>
15.	FIS/07	Anno di corso 1	ARCHAEOMETRY <u>link</u>	STELLA GIUSEPPE	RD	6	29	✓
16.	FIS/04	Anno di corso 1	ASTROPARTICLE PHYSICS <u>link</u>	RICCOBENE GIORGIO MARIA		6	21	
17.	FIS/04	Anno di corso 1	ASTROPARTICLE PHYSICS <u>link</u>	TRICOMI ALESSIA RITA	РО	6	21	
18.	FIS/04	Anno di corso 1	ASTROPARTICLE PHYSICS <u>link</u>			6		
19.	FIS/05	Anno di corso 1	ASTROPHYSICS <u>link</u>	LANZAFAME ALESSANDRO CARMELO	PA	6	42	•
20.	FIS/01	Anno di corso 1	ASTROPHYSICS LABORATORY <u>link</u>	PUGLISI GIUSEPPE		6	28	
21.	FIS/01	Anno di corso 1	ASTROPHYSICS LABORATORY <u>link</u>	PUMO MARIA LETIZIA PIERA	RD	6	30	
22.	FIS/02	Anno di corso 1	ATOMIC AND PLASMA PHYSICS <u>link</u>			6	42	
23.	FIS/07	Anno di corso 1	BASIC EXPERIMENTAL AND APPLIED LABORATORY link			6	66	
24.	FIS/04	Anno di corso 1	BASIC NUCLEAR PHYSICS <u>link</u>			6	42	
25.	FIS/02	Anno di corso 1	COMPUTING AND NUMERICAL METHODS link			6	50	
26.	0	Anno di corso 1	ELECTIVE COURSE link			6		
27.	0	Anno di corso 1	ELECTIVE COURSE link			6		
28.	0	Anno di corso 1	ELECTIVE COURSE link			6		
29.	0	Anno di corso 1	ELECTIVE COURSE <u>link</u>			6		
30.	FIS/01	Anno di corso 1	ELECTRONICS AND APPLICATIONS link	LO PRESTI DOMENICO	PA	6	42	✓
31.	FIS/01	Anno di corso 1	ENVIRONMENTAL RADIOACTIVITY link			6		
32.	FIS/01	Anno di corso 1	ENVIRONMENTAL RADIOACTIVITY link	ROMANO STEFANO	РО	6	28	
33.	FIS/01	Anno di corso 1	ENVIRONMENTAL RADIOACTIVITY link	RAPISARDA GIUSEPPE GABRIELE	RD	6	14	
34.	FIS/01	Anno di corso 1	EXPERIMENTAL METHODS FOR NUCLEAR PHYSICS link	MUSUMARRA AGATINO	PA	6	66	
35.	FIS/01	Anno di corso 1	EXPERIMENTAL METHODS FOR PARTICLE PHYSICS link	PETTA CATIA MARIA ANNUNZIATA	PA	6	45	
36.	FIS/01	Anno di corso 1	EXPERIMENTAL METHODS FOR PARTICLE PHYSICS link	ALBERGO SEBASTIANO FRANCESCO	РО	6	21	
37.	FIS/05	Anno di corso 1	GENERAL RELATIVITY link			6		
38.	FIS/05	Anno di corso 1	GENERAL RELATIVITY link	BONANNO ALFIO MAURIZIO		6	42	
39.	FIS/07	Anno di corso 1	IMAGE ANALYSIS AND FUNDAMENTALS OF DOSIMETRY link	GUELI ANNA MARIA	PA	6	21	•
40.	FIS/07	Anno di corso 1	IMAGE ANALYSIS AND FUNDAMENTALS OF DOSIMETRY link	STELLA GIUSEPPE	RD	6	21	~
41.	FIS/01	Anno di corso 1	MACHINE LEARNING FOR PHYSICS <u>link</u>			6		
42.	FIS/01	Anno di corso 1	MACHINE LEARNING FOR PHYSICS <u>link</u>	RUSSO MARCO	РО	6	50	
43.	FIS/06	Anno di corso 1	MAGNETOHYDRODYNAMICS AND PLASMA PHYSICS <u>link</u>	ZUCCARELLO FRANCESCA	PA	6	42	•

44.	FIS/01	Anno di corso 1	MATERIALS AND NANOSTRUCTURES LABORATORY link	URSO MARIO		6	66	
45.	FIS/07	Anno di corso 1	MEDICAL PHYSICS link	CIRRONE GIUSEPPE ANTONIO PABLO		6	42	
46.	FIS/07	Anno di corso 1	MEDICAL PHYSICS link			6		
47.	FIS/02	Anno di corso 1	MESOSCOPIC AND TOPOLOGICAL MATERIALS <u>link</u>	PELLEGRINO FRANCESCO MARIA DIMITRI	RD	6	42	
48.	FIS/01 FIS/04	Anno di corso 1	NUCLEAR AND PARTICLE PHYSICS <u>link</u>			9		
49.	FIS/01	Anno di corso 1	NUCLEAR AND PARTICLE PHYSICS I (modulo di NUCLEAR AND PARTICLE PHYSICS) link	TRICOMI ALESSIA RITA	РО	3	21	v
50.	FIS/04	Anno di corso 1	NUCLEAR AND PARTICLE PHYSICS II <u>link</u>	TRICOMI ALESSIA RITA	РО	6	42	
51.	FIS/04	Anno di corso 1	NUCLEAR AND PARTICLE PHYSICS II (modulo di NUCLEAR AND PARTICLE PHYSICS) link	TRICOMI ALESSIA RITA	РО	6	42	
52.	FIS/01	Anno di corso 1	NUCLEAR AND PARTICLE PHYSICS LABORATORY <u>link</u>	POLITI GIUSEPPE	PA	6	66	€
53.	FIS/04	Anno di corso 1	NUCLEAR ASTROPHYSICS <u>link</u>			6		
54.	FIS/04	Anno di corso 1	NUCLEAR ASTROPHYSICS <u>link</u>	ROMANO STEFANO	РО	6	21	
55.	FIS/04	Anno di corso 1	NUCLEAR ASTROPHYSICS <u>link</u>			6		
56.	FIS/04	Anno di corso 1	NUCLEAR ASTROPHYSICS <u>link</u>	LAMIA LIVIO	PA	6	21	
57.	FIS/02	Anno di corso 1	NUCLEAR REACTION THEORY <u>link</u>			6		
58.	FIS/02	Anno di corso 1	NUCLEAR REACTION THEORY <u>link</u>	COLONNA MARIA		6	50	
59.	FIS/02	Anno di corso 1	NUCLEAR REACTION THEORY <u>link</u>			6		
60.	FIS/03	Anno di corso 1	PHOTONICS <u>link</u>	LO FARO MARIA JOSE' IRENE	RD	6	42	
61.	FIS/01	Anno di corso 1	PHYSICS AND TECHNOLOGY OF MATERIALS <u>link</u>	TERRASI ANTONIO	РО	6	42	
62.	FIS/03	Anno di corso 1	PHYSICS AND TECHNOLOGY OF TWO-DIMENSIONAL MATERIALS AND DEVICES <u>link</u>	TORRISI FELICE	PA	6	42	€
63.	FIS/02	Anno di corso 1	PHYSICS OF COMPLEX SYSTEMS link	RAPISARDA ANDREA	PA	6	50	€
64.	FIS/03	Anno di corso 1	PLASMA SPECTROSCOPY <u>link</u>	LANZAFAME ALESSANDRO CARMELO	PA	6	42	
65.	FIS/02	Anno di corso 1	QUANTUM FIELD THEORY - I <u>link</u>			6		
66.	FIS/02	Anno di corso 1	QUANTUM FIELD THEORY - I <u>link</u>	BRANCHINA VINCENZO	PA	6	50	€
67.	FIS/02	Anno di corso 1	QUANTUM FIELD THEORY -II <u>link</u>	BRANCHINA VINCENZO	PA	6	50	€
68.	FIS/02	Anno di corso 1	QUANTUM MECHANICS link			6	50	
69.	FIS/02	Anno di corso 1	QUANTUM PHASES OF MATTER <u>link</u>	ZAPPALA' DARIO GAETANO		6	42	
70.	FIS/02	Anno di corso 1	QUANTUM PHASES OF MATTER <u>link</u>			6		
71.	FIS/03	Anno di corso 1	SEMICONDUCTOR PHYSICS AND TECHNOLOGY link	MIRABELLA SALVATORE	PA	6	42	~
72.	FIS/05	Anno di corso 1	SOLAR PHYSICS <u>link</u>	ZUCCARELLO FRANCESCA	PA	6	50	
73.	FIS/03	Anno di corso 1	SOLID-STATE PHYSICS <u>link</u>			6		

74. FIS/	03 Anno di corso 1	SOLID-STATE PHYSICS <u>link</u>			6		
75. FIS/	Anno di corso 1	SOLID-STATE PHYSICS <u>link</u>	ANGILELLA GIUSEPPE GIOACCHINO NEIL	PA	6	42	•
76. FIS/	Anno di corso 1	SOLID-STATE PHYSICS <u>link</u>			6		
77. FIS/	Anno di corso 1	SUPERCONDUCTIVITY AND SUPERFLUIDITY link	PALADINO ELISABETTA	PA	6	42	•
78. FIS/	Anno di corso 1	SUPERCONDUCTIVITY AND SUPERFLUIDITY link			6		
79. FIS/	Anno di corso 1	THEORY OF STRONG INTERACTIONS <u>link</u>			6		
80. FIS/	Anno di corso 1	THEORY OF STRONG INTERACTIONS <u>link</u>	GRECO VINCENZO	PO	6	50	•

QUADRO B4 Aule

Pdf inserito: visualizza

QUADRO B4 Laboratori e Aule Informatiche

Pdf inserito: visualizza

QUADRO B4 Sale Studio

Pdf inserito: visualizza

QUADRO B4 Biblioteche

Pdf inserito: visualizza

QUADRO B5 Orientamento in ingresso

19/04/2022
Presso il Dipartimento di Fisica e Astronomia 'Ettore Majorana', l'orientamento in ingresso è coordinato dalla Prof.ssa Maria Grazia Grimaldi, direttrice del DFA, che per queste attività si avvale della collaborazione della Prof.ssa Elena Geraci (Delegata del DFA alla Terza Missione).

L'orientamento viene realizzato in diverse forme:

- a) partecipazione, da parte di vari docenti del CdS, alle iniziative promosse dalle scuole secondarie, durante le quali vengono presentati i corsi di studio;
- b) promozione di cicli di seminari, a carattere divulgativo, con il supporto del piano Lauree Scientifiche e il coinvolgimento anche delle sezioni locali dell'Associazione per l'Insegnamento della Fisica (AIF);
- c) mediante le molteplici attività di collaborazione con le scuole secondarie, quali ad esempio visite guidate presso i laboratori di ricerca, mostre come "Dire L'indicibile-La sovrapposizione quantistica" proposta nei locali della SSC di UNICT dal 1-14 Aprile 2022 e visitata da circa 1000 studenti delle scuole superiori, realizzazione di attività laboratoriali presso i laboratori didattici e di ricerca, promosse nell'ambito del Piano MIUR 'Lauree Scientifiche' laureescientifiche-fisica-ct, che nel presente AA ha offerto anche il corso di aggiornamento per insegnanti "Meccanica Quantistica e Relatività nella didattica dei licei";
- d) realizzazione di attività nell'ambito del programma 'Percorsi per le Competenze Trasversali e per l'Orientamento' (PCTO), quali ad esempio "Dalla Ricerca alla Divulgazione" realizzato in collaborazione con gli studenti universitari di EPS-YM Catania, Physics Fair, Premio Asimov e Physics Debate;
- e) organizzazione con la collaborazione del COF del Salone dello Studente, da svolgersi dal 17 al 19 maggio 2022;
- f) Partecipazione, con la collaborazione del COF, all'evento OrientaSicilia il 26 27 28 Ottobre 2021, che su piattaforma digitale ha proposto stand virtuali per il contatto diretto con gli studenti delle scuole superiori, con presentazione dell'offerta formativa, delle procedure di ammissione, servizi agli studenti e approfondimenti tramite video di presentazione del Dipartimento, utilizzando una formula già collaudata durante gli Open Days Home Edition di maggio 2021;
- g) in collaborazione con il COF, incontri online di orientamento per la presentazione dell'offerta formativa dei Dipartimenti, svolti il 7/03/2022 e il 8/04/2022;
- h) organizzazione del $\underline{\text{Welcome day}}.$

Nel corso del 2020 è stato istituito il servizio di <u>'Helpdesk'</u>, costituito da un gruppo di persone (Personale Tecnico-Amministrativo e Docenti) che, per ruolo e competenza, sono a disposizione per rispondere a questioni e quesiti possibilmente di veloce soluzione in tempi brevi. Il servizio è accessibile via e-mail, telefono, Telegram bot. Esso nasce per fornire

tempestiva assistenza per la didattica online e blended, ma rimane disponibile anche in seguito, per ogni questione relativa alla didattica ed al Dipartimento in generale.

Una importante attività di orientamento in ingresso specifica per la Laurea Magistrale, organizzata dalla Commissione di Qualità del DFA, è costituita da un ciclo di seminari orientativi che ha lo scopo di presentare agli studenti del terzo anno della Triennale il percorso formativo della laurea Magistrale. Ogni seminario, generalmente svolto dal docente referente di ogni Curriculum della Magistrale, si basa su una breve descrizione dei contenuti degli insegnamenti previsti in ogni curriculum e delle relazioni con gli enti di ricerca o le aziende ed enti pubblici interessati

L'ultimo ciclo di seminari orientativi si è svolto nella seconda metà di Maggio 2021, con una formula simile a quella utilizzata nel corso del 2020, quando i suddetti seminari si sono svolti online attraverso la piattaforma MS Teams (MSc in Physics: which curriculum?). Ai diversi incontri hanno preso parte esponenti del mondo del lavoro, che hanno illustrato agli studenti le effettive potenzialità occupazionali dei laureati magistrali in Physics, e le possibilità connesse all'eventuale proseguimento di studi di alta formazione. Ospiti nel 2021 Dr Simonetta di Pippo, direttrice UNOOSA, e Massimo Gaggi, corrispondente Corriere della Sera.

Svolge un ruolo di orientamento al CdLM anche il ciclo di seminari 'Science Colloquia', cui sono invitati gli studenti dei CdS in Fisica.

Infine, come anche pubblicizzato nella pagina web del CdS, i docenti referenti di ogni Curriculum della Magistrale sono a disposizione degli studenti per illustrare i percorsi consigliati e i criteri per formulare piani di studio individuali, coerenti con gli obiettivi formativi del corso.

Link inserito: https://www.dfa.unict.it/it/content/msc-physics-which-curriculum-2021-edition

QUADRO B5

Orientamento e tutorato in itinere

19/04/2022

Le attività di tutorato in itinere erogate presso il Dipartimento di Fisica e Astronomia, e in particolare per gli studenti della Magistrale sono descritte nel seguito.

Per ogni Curriculum della Magistrale sono a disposizione i docenti referenti http://www.dfa.unict.it/it/corsi/lm-17/referenti-dei-curricula

ASTROPHYSICS: prof. Alessandro Lanzafame

APPLIED PHYSICS: prof.ssa Anna Maria Gueli;

CONDENSED MATTER PHYSICS: prof. Giuseppe Falci e prof. Riccardo Reitano;

NUCLEAR AND PARTICLE PHYSICS: prof. Giuseppe Politi e prof.ssa Alessia Tricomi;

THEORETICAL PHYSICS: prof. Vincenzo Branchina e prof. Andrea Rapisarda

NUCLEAR PHENOMENA AND THEIR APPLICATIONS: prof. Stefano Romano

Essi sono disponibili a illustrare agli studenti i percorsi consigliati e i criteri per formulare piani di studio individuali, coerenti con gli obiettivi formativi del corso.

Inoltre gli studenti hanno a disposizione un elenco di docenti-tutor http://www.dfa.unict.it/it/corsi/lm-17/elenchi/docenti-tutor-lm-17, i quali hanno il compito di fornire consigli sulle scelte degli insegnamenti da inserire nel piano di studi, secondo gli interessi e le capacità individuali. Sarà inoltre compito dei tutor prendere atto di eventuali problematiche che possano emergere dai colloqui con gli studenti per avviare, nelle sedi opportune, le necessarie azioni correttive.

Al fine di potenziare le attività di orientamento in ingresso e in itinere per favorire la consapevolezza delle scelte da parte degli studenti, il Consiglio di CdL Magistrale, nella seduta del 12/06/2020, ha approvato le sequenti attività, nell'ambito di una iniziativa denominata 'Tutor LM-17':

- 1. Istituire una Giornata di Orientamento per gli immatricolati alla Laurea Magistrale in Physics all'inizio dell'A.A. Durante tale giornata, oltre a dare il benvenuto agli studenti, viene illustrata l'organizzazione generale del CdS e in particolare il ruolo dei docenti-tutor, confrontandolo con quello dei referenti dei curricula e del relatore di tesi.
- 2. Rendere più visibile l'attività di orientamento in itinere, soprattutto tramite i docenti-tutor, nella pagina web del CdS.
- 3. Promuovere il 'Mese del tutoraggio' (tra ottobre e novembre), durante il quale gli studenti verrebbero invitati (tramite locandine, e-mail, news nelle pagine web e sui social) a incontrare un certo numero di docenti-tutor tra quelli indicati nel sito del CdS, per poi sceglierne uno entro le vacanze natalizie.
- 4. Gli studenti comunicano tale scelta in modo ufficiale al Presidente del CdS entro il 15 Gennaio (le scelte degli studenti saranno riportate in un registro disponibile presso l'Ufficio della Didattica, in modo da permettere un monitoraggio anche da parte del CDQD)
- 5. Gli studenti hanno la possibilità di cambiare il docente-tutor in qualsiasi momento
- 6. Nel caso in cui il docente-tutor venisse scelto come relatore di tesi, è possibile indicare un nuovo docente-tutor.

La suddetta procedura ha trovato applicazione nel mese di novembre 2020, quando, nell'arco di quattro giornate, i docenti-tutor si sono presentati agli studenti del DFA e hanno risposto alle loro domande sul ruolo e sul significato della attività di tutoring (https://www.dfa.unict.it/it/notizie/tutoring-month). L'iniziativa ha avuto un notevole successo, poichè 63 studenti della Magistrale hanno ufficializzato la loro scelta di un tutor.

Nell'ambito del progetto di Ateneo promosso dal COF, 'L'Università mi aiuta', il Gruppo di Counseling del CdL Magistrale ha intrapreso a partire dall'A.A. 2013/14 un'azione molto incisiva, finalizzata al recupero di studenti fuori corso (V.O., B04, M14, O61, Q93, 17N). Nell'A.A. 2013/2014 il numero di studenti fuori corso (per tutti gli ordinamenti) era pari a 89, mentre nell'A.A. 2021/2022 si registra un numero di studenti fuori corso pari a 60. Tale decremento, che offre sicuramente dei margini di miglioramento, indica comunque che le attività di Counseling hanno avuto un effetto molto positivo nel contribuire a risolvere diverse criticità che avevano costituito in passato un ostacolo al conseguimento del titolo di studio. I referenti del Counseling sono riportati nel sito web del CdL https://www.dfa.unict.it/corsi/lm-17/orientamento-e-counseling.

Fra le attività di orientamento in itinere si ricordano infine i Colloquia (http://www.dfa.unict.it/it/colloquia), svolti sia da docenti del CdL che da ricercatori degli enti che collaborano con il DFA. I Colloquia hanno anche lo scopo di illustrare possibili argomenti di tesi e orientare gli studenti alla scelta degli insegnamenti opzionali del secondo anno, in modo da poter acquisire le competenze necessarie per affrontare il lavoro di ricerca oggetto della tesi.

Descrizione link: Orientamento e Counseling

Link inserito: http://www.dfa.unict.it/corsi/lm-17/orientamento-e-counseling

QUADRO B5

Assistenza per lo svolgimento di periodi di formazione all'esterno (tirocini e stage)

A partire dall'A.A. 2021/2022, allo studente che svolgerà, in tutto o in parte, il lavoro di ricerca tesi effettuando uno stage presso un ente di ricerca o una azienda convenzionati con l'Università di Catania, verranno attribuiti 5 CFU per ogni mese di stage fino ad un massimo di 6 mesi. Le opzioni possibili fra cui lo studente potrà scegliere sono indicate nel seguente

- 10 CFU di stesura tesi ed esame finale + 5 CFU stage + 25 CFU ricerca tesi DFA
- 10 CFU di stesura tesi ed esame finale + 10 CFU stage + 20 CFU ricerca tesi DFA
- 10 CFU di stesura tesi ed esame finale + 15 CFU stage + 15 CFU ricerca tesi DFA
- 10 CFU di stesura tesi ed esame finale + 20 CFU stage + 10 CFU ricerca tesi DFA
- 10 CFU di stesura tesi ed esame finale + 25 CFU stage + 5 CFU ricerca tesi DFA
- 10 CFU di stesura tesi ed esame finale + 30 CFU stage.

Per il curriculum NUCLEAR PHENOMENA AND THEIR APPLICATIONS il tirocinio è di 12 CFU, come da Consortium Agreement.

La segreteria didattica avvia gli studenti al tirocinio, seguendone le procedure e agevolando i contatti con i referenti e tutor presenti nelle strutture esterne pubbliche o private, convenzionate, operanti nei diversi settori di interesse.

Descrizione link: Aziende/Enti Convenzionati con UNICT

Link inserito: http://www.cof.unict.it/content/aziendeenti-convenzionati

QUADRO B5

Assistenza e accordi per la mobilità internazionale degli studenti

In questo campo devono essere inserite tutte le convenzioni per la mobilità internazionale degli studenti attivate con Atenei stranieri, con l'eccezione delle convenzioni che regolamentano la struttura di corsi interateneo; queste ultime devono invece essere inserite nel campo apposito "Corsi interateneo".

Per ciascun Ateneo straniero convenzionato, occorre inserire la convenzione che regolamenta, fra le altre cose, la mobilità degli studenti, e indicare se per gli studenti che seguono il relativo percorso di mobilità sia previsto il rilascio di un titolo doppio o multiplo. In caso non sia previsto il rilascio di un titolo doppio o multiplo con l'Ateneo straniero (per esempio, nel caso di convenzioni per la mobilità Erasmus) come titolo occorre indicare "Solo italiano" per segnalare che gli studenti che seguono il percorso di mobilità conseguiranno solo il normale titolo rilasciato dall'ateneo di origine.

Per i casi in cui lo studente voglia approfondire la sua formazione mediante stage all'estero, vengono fornite informazioni sugli avvisi e bandi relativi alla formazione in altri paesi, sulle occasioni di mobilità in uscita, sui programmi di cooperazione internazionale, gli accordi quadro e le convenzioni utili per lo studente che voglia approfondire la sua preparazione in strutture qualificate all'estero.

L'ufficio di riferimento è l'Ufficio per la Mobilità Internazionale (UMI) dell'Ateneo (www.unict.it/it/internazionale). Esso gestisce i principali programmi europei ed extra europei di mobilità studenti, neo-laureati, docenti e staff per finalità di studio, tirocinio, didattica e formazione presso Università, aziende e altre strutture internazionali.

In particolare, l'UMI cura la partecipazione dell'Università di Catania al Programma Erasmus Plus che permette, tramite l'azione Erasmus Studio, agli studenti di trascorrere un periodo presso Università partecipanti al programma per finalità di studio o per elaborare la propria tesi di laurea. L'UMI cura e coordina, altresì, i principali programmi che permettono a studenti, laureandi e neo-laureati di svolgere un periodo di tirocinio e formazione professionale presso aziende ed enti all'estero. Accoglie, infine, gli studenti stranieri in entrata fornendo loro supporto informativo e assistenza.

In stretta connessione con l'UMI, la segreteria didattica del DFA gestisce il flusso degli studenti in entrata e in uscita presso i CdS del DFA e in particolare collabora con l'UMI durante le procedure per l'assegnazione delle borse di mobilità e fornisce supporto agli studenti incoming e outgoing nell'espletamento delle procedure amministrative.

Inoltre il CdLM si avvale del docente delegato all'internazionalizzazione istituito presso il DFA, Prof.ssa Elisabetta Paladino (epaladino@dmfci.unict.it), che si occupa della gestione

Inoltre il CdLM si avvale del docente delegato all'internazionalizzazione istituito presso il DFA, Prof.ssa Elisabetta Paladino (epaladino@dmfci.unict.it), che si occupa della gestione delle seguenti attività:

- 1. propone e avvia azioni volte a favorire l'internazionalizzazione del DFA e a incrementare la mobilità sia in uscita che in entrata di studenti e docenti del Dipartimento, seguendo le indicazioni del Coordinatore Istituzionale Erasmus dell'Ateneo e in linea con il 'Programma per la mobilità internazionale del corpo docente e del corpo studentesco' approvato dal Consiglio di Amministrazione di UniCT nella seduta del 26/03/2018;
- 2. pubblicizza la pubblicazione di bandi per mobilità internazionale degli studenti (ad esempio nell'ambito del progetto 'SMOC-Students Mobility Consortium' coordinato dal Collegio Universitario di Merito ARCES o del 'Aalto Science Institute internship programme') e i bandi di Ateneo relativi all'Azione Chiave 1. Mobilità per studio e traineeship verso Programme e Partner Countries del Programma Erasmus+ tramite la pagina web del DFA, gruppi social degli studenti di Fisica e organizzando giornate informative dedicate;
- 3. fornisce supporto agli studenti nella preparazione delle domande per la partecipazione ai suddetti bandi. In seguito alla selezione orienta gli studenti nella scelta della sede di destinazione e degli insegnamenti da inserire nel piano di studio che gli stessi si propongono di frequentare all'estero, a seguito della comparazione dei programmi offerti dall'Università di destinazione e quelli in vigore nel proprio corso di studi;
- 4. firma i piani di studio ufficiali (Learning o Training Agreement);
- 5. istruisce le pratiche per l'approvazione e/o modifiche dei piani di studio da parte del Consiglio CdLM;
- 6. controlla e gestisce gli accordi bilaterali del Dipartimento in collaborazione con i docenti responsabili degli stessi e gli uffici preposti.

Dall'A.A. 2019/2020 è stata data maggiore visibilità in carriera studenti dei CFU acquisiti all'estero nell'ambito dei programmi Erasmus+ effettuando una ripartizione più elastica dei CFU assegnabili alla ricerca Tesi di Laurea.

Recentemente, su iniziativa del DFA, sono state istituite delle quote premiali di 150 €/mese per un massimo di 6 mensilità per studenti Erasmus+ outgoing.

La responsabile dell'Unità didattica Internazionale e del Master Nuclear Phenomena and their Applications è la Dott.ssa Sara De Francisci (saradef@unict.it).

Descrizione link: Be International @ DFA

Link inserito: http://www.dfa.unict.it/it/content/international

n.	Nazione	Ateneo in convenzione	Codice EACEA	Data convenzione	Titolo
1	Finlandia	Aalto Korkeakoulusaatio		01/03/2022	solo italiano
2	Francia	Sorbonne Universite		01/03/2022	solo italiano
3	Francia	Universite de Caen Basse-Normandie		01/03/2022	doppio

4	Francia	University of Rennes	01/03/2022	solo italiano
5	Germania	Bayerische Julius-Maximilians- Universität WÃ⅓rzburg	01/03/2022	solo italiano
6	Germania	Ruhr Universität Bochum	01/03/2022	solo italiano
7	Germania	Technische Universitat Dresden	01/03/2022	solo italiano
8	Germania	University of Munster	01/03/2022	solo italiano
9	Germania	Universität Regensburg	01/03/2022	solo italiano
10	Spagna	Universidad de La Laguna	01/03/2022	solo italiano
11	Spagna	Universidad de Salamanca	01/03/2022	solo italiano
12	Spagna	Universidad de Sevilla	01/03/2022	doppio
13	Turchia	Ege Universitesi Ziraat Fakultesi (Izmir)	01/03/2022	solo italiano

QUADRO B5

Accompagnamento al lavoro

Il collegamento tra il mondo universitario e quello del lavoro rappresenta una delle priorità del Dipartimento di Fisica e Astronomia 'Ettore Majorana'. Esso viene perseguito sia nella fase di progettazione dei Corsi di Studio che ad esso afferiscono, sia nelle occasioni di incontro tra studenti, laureati, figure professionali, enti di ricerca e aziende. Allo scopo di consolidare e ampliare le relazioni di collaborazione con le realtà territoriali e del mondo del lavoro e della ricerca e sulla base delle indicazioni ministeriali e delle più recenti Linee Guida ANVUR, il Consiglio di Corso di Laurea Magistrale in Physics nella seduta del 10 dicembre 2018 ha istituito un Comitato di Indirizzo (CI) con l'obiettivo di avere una consultazione periodica del mondo imprenditoriale del lavoro, del mondo della Pubblica Amministrazione (PA), dei servizi, della scuola e della ricerca Fanno parte del C.I. il Presidente del Corso di Laurea magistrale in Physics, il Presidente del Corso di Laurea in Fisica, i Docenti referenti dei curricula CLM, i Coordinatori dei Dottorati di ricerca del DFA, Rappresentanti degli enti di ricerca (CNR, CSFNSM, INAF, INFN, INGV), Rappresentanti delle Imprese (ENEL, STM), Rappresentanti degli enti locali (ARPA-CT, ASP-CT), Rappresentanti di Associazioni coerenti con i CdS (Albo professionale di Chimici&Fisici), Rappresentante della Scuola (Dirigente scolastico laureato in Fisica), Rappresentanti degli studenti, Rappresentanti di laureati da non più di otto anni, Rappresentanti dei dottorandi, un responsabile segreteria didattica Il Comitato d'Indirizzo, dal momento della sua costituzione, si è riunito annualmente, in data 27.3.2019, 21.2.2020 e 18.2.2021. Durante la prima seduta, è stato deliberato il Regolamento del C.I., in particolare le sue funzioni. I rappresentanti del mondo del lavoro hanno espresso il loro apprezzamento per le competenze disciplinari con cui i laureati del CdLM si affacciano al mondo del lavoro e hanno dato importanti feedback, in particolare su alcune competenze trasversali che sono da rafforzare. Durante la seduta successiva, avvenuta nella fase di programmazione dell'offerta didattica per il successivo A.A., sono state presentate le iniziative condotte a seguito della prima consultazione col Comitato d'Indirizzo. È stata avviata una lunga discussione tra le parti, atta a valutare le principali competenze che le aziende e gli enti ricercano in un laureato magistrale in Fisica. Sono state avanzate diverse possibili iniziative mirate a rafforzare il legame tra il mondo accademico e quello lavorativo (seminari sulla preparazione di progetti di ricerca, potenziamento di soft skills). In occasione del terzo incontro, avvenuto durante la fase di programmazione dell'offerta didattica A.A. 2021/2022, sono state discussi con gli stakeholders gli aspetti da implementare e i risultati dei sondaggi sulle opinioni degli studenti e dei laureati. Durante l'incontro, è stata inoltre ribadita, da parte dei membri del CI, l'importanza di organizzare i percorsi formativi in modo da favorire le attività di stage e tirocinio presso aziende e enti di ricerca, allo scopo di instaurare contatti sempre più stretti fra gli studenti e il mondo del lavoro.

Inoltre numerosi docenti del Dipartimento svolgono attività di ricerca in stretta collaborazione con alcuni enti di ricerca (INFN, INAF, CNR, INGV) che presentano delle sedi proprio sul territorio (in alcuni casi i docenti svolgono la propria attività di ricerca all'interno di queste sedi) e con alcune realtà lavorative (ad esempio, STM, 3SUN, Moncada Energy, ENEL, ARPA). Questa continua collaborazione offre agli studenti l'opportunità, durante il loro lavoro di tesi, di essere coinvolti in prima persona nelle ricerche di punta e di conoscerne lo stato dell'arte. Nel passato, questa situazione ha favorito l'ingresso dei neolaureati nel mondo del lavoro negli enti suddetti o nelle aziende citate, entro pochi anni dalla laurea.

Allo scopo di monitorare l'efficacia dell'offerta formativa del CdS nel consentire ai laureati un rapido e soddisfacente ingresso nel mondo del lavoro, sono state condotte due survey. rivolte agli Alumni del DFA, i cui risultati sono disponibili al link https://www.dfa.unict.it/it/corsi/lm-17/sondaggi.

Nel corso del 2019 sono stati organizzati presso il DFA alcuni eventi caratterizzati da interventi di rappresentanti di aziende operanti nel territorio: a) 'Opportunità ed esperienze della Programmazione Regionale nell'ambito della Fisica e delle tecnologie collegate' (3 Luglio 2019), con interventi di Dirigenti del Dipartimento Regionale Programmazione, del Dipartimento Regionale delle Attività Produttive, del Distretto Tecnologico Sicilia Micro e Nano Sistemi. b) 'Seminari su laser e medicina nucleare' (14-28 Giugno 2019), con interventi di Dirigenti dell'ASP Messina, Ospedale 'S, Vincenzo' di Taormina e dell'U.O.C, Medicina Nucleare – Centro PET, ARNAS Garibaldi, P.O. Nesima, c) Workshop 'Ricerca in movimento' (4 Aprile 2019), indirizzata ai giovani fisici per introdurli ad alcuni strumenti della Comunità Europea e dello Stato Italiano che permettono la realizzazione di progetti di ricerca originali ed innovativi proposti da giovani di talento. Inoltre, si segnala l'evento 'Al lavoro Sicilia' (Messina, 28 Marzo 2019), organizzato da Alma Laurea con il contributo delle Università Siciliane, durante il quale i laureandi e laureati di UniCT hanno avuto l'opportunità di conoscere e incontrare aziende di piccole, medie e grandi dimensioni e presentare il loro CV: Alleanza Assicurazioni, Alten Italia, Aurobindo Pharma, Automazioni Industriali Capitanio, Blue Reply, Capgemini Italia, Carrefour, Consoft Informatica, Costa Crociere, Indra - Minsait, Italdesign, KPMG, Leroy Merlin, Lidl Italia, Ntt Data Italia, Previnet, QiBit, Sonatrach Raffineria Italiana, Schneider Electric, Spindox, TXT E-Solutions e Volotea.

Nel corso del 2020 e nei primi mesi del 2021 hanno avuto luogo i seguenti eventi:

- Seminari di orientamento alla Magistrale (8 13 15 maggio 2020): durante i seminari, alcuni ex-studenti hanno descritto il percorso che hanno compiuto nel periodo post-laurea, le opportunità che li hanno condotti alla loro attuale occupazione e fornito un quadro globale dell'evoluzione del mondo del lavoro. Le testimonianze sono state fornite da: C. Inserra, Ricercatore, U. di Cardiff; M. Chiorboli, Vice Presidente di JPMorgan Chase & Co-Ginevra; S. Scollo, Primo Ricercatore-INGV; I. Lodato Research Project Lead, Data Analyst, software engineer at Nysus Limited; R. Sinatra, ITU Copenhagen; P. Di Stefano, Senior Data Scientist at Experian DataLabs, Londra; F. Mazza, Boston Consulting Group; A. Espinosa, Universidad Complutense, CEI Moncloa, Madrid, Spain) (vedi https://www.dfa.unict.it/it/content/msc-physics-which-curriculum)
- 'MatLab Day' (30 maggio 2020) (https://www.dfa.unict.it/it/content/matlab-day-2020), a cura del gruppo EPS Young Minds Catania
- 'Python Days' (7-9-14-16 Dicembre 2020) (vedi https://www.dfa.unict.it/it/content/python-days-2020), a cura del gruppo EPS Young Minds Catania
- Seminari COF Orientarsi nel mondo del lavoro Dalle soft skills al CV, strumenti per la candidatura; Simulazione di un processo selettivo (8 e 9 febbraio 2021, https://www.dfa.unict.it/it/content/dalle-soft-skills-al-mercato-del-lavoro)
- Recruiting Day SAS INST (22 febbraio 2021)
- Webinar dell'editorialista del Corriere della Sera Massimo Gaggi su 'Mervaiglie e vulnerabilità della Tecnologia' (12 aprile 2021) (https://www.dfa.unict.it/it/content/meraviglie-evulnerabilit%C3%A0-della-tecnologia)
- Incontri con rappresentanti di alcune aziende (ENEL e Mediterranea Impianti) al fine di fornire informazioni utili sulle opportunità di lavoro nell'ambito territoriale (26 Aprile 2021)

Infine l'Università di Catania per agevolare l'ingresso dei suoi studenti e laureati nel mercato del lavoro, per il tramite del Centro di Orientamento. Formazione e Placement (COF) svolge attività mirate di orientamento al lavoro e di intermediazione http://www.cof.unict.it/

Attraverso il 'Progetto Check CV' il COF offre un servizio itinerante all'interno dei dipartimenti, rivolto a studenti e laureati, con l'obiettivo di effettuare una revisione estemporanea dei loro curricula e fornire consigli utili per la formulazione del proprio Curriculum Vitae.

Intermediazione

L'intermediazione consiste nell'attivazione e gestione di tirocini post laurea e di processi deselettivi in collaborazione con aziende che intendono assumere giovani laureati. Per fare questo, il Centro si occupa di stipulare convenzioni per stage e tirocini, attivare tirocini post laurea e post master, divulgare annunci di stage e di lavoro, effettuare screening dei CV e preselezione, effettuare consulenze per l'attivazione di contratti di apprendistato di alta formazione e ricerca.

Career Counseling

Il Career Counseling offre percorsi di orientamento e potenziamento delle risorse personali e professionali, fornisce consulenza di orientamento al lavoro, organizza presentazioni aziendali e workshop di orientamento al lavoro.

L'Università di Catania inoltre aderisce al Consorzio universitario Alma Laurea, per fornire un servizio che permetta ai laureati di rendere disponibili on line i propri curricula, per favorire l'incontro fra aziende, enti di ricerca, università e laureati a livello nazionale e internazionale.

Descrizione link: Comitato di Indirizzo

Link inserito: http://www.dfa.unict.it/it/corsi/lm-17/comitato-di-indirizzo

QUADRO B5

Eventuali altre iniziative

Il Dipartimento di Fisica e Astronomia, presso cui il CdS è incardinato, ha come referente del Centro per l'Integrazione Attiva e Partecipata (CInAP) in UNICT la Prof.ssa Catia Petta, e come referente amministrativo il Sig. Barbato e il referente tecnico il sig. A. La Rocca. Il CInAP sostiene e coordina l'assegnazione di servizi e tutte le iniziative atte a migliorare la qualità di vita degli studenti iscritti all'Università di Catania che presentino condizioni di ridotta attività o partecipazione alla vita accademica e ogni altra situazione di svantaggio, temporanea o permanente. Il Dipartimento di Fisica e Astronomia, pertanto, collabora con il CInAP al fine di concertare interventi e studi specifici, sensibilizzare e contribuire allo sviluppo di una nuova cultura dell'inclusione, finalizzata a migliorare le condizioni degli studenti del corso di studi che ne presentino la necessità. www.cinap.unict.it

Nel sito del DFA (http://www.dfa.unict.it/it/content/presentazione) è disponibile un video, realizzato dalla Redazione di Zammù TV, l'emittente dell'Università di Catania, in cui studenti iscritti ai corsi di laurea del Dipartimento di Fisica e Astronomia, docenti e ricercatori, spiegano perché studiare Fisica a Catania.

Nel sito del CdS, al link https://www.dfa.unict.it/it/corsi/lm-17/gli-alumni-del-dfa-dicono) sono disponibili alcuni video che raccolgono le testimonianze di Alumni del CdS sulla propria esperienza nell'inserirsi nel mondo del lavoro e sulle opportunità offerte dalla Laurea Magistrale in Fisica. I video fanno parte delle attività del gruppo EPS Young Minds Catania Section.

Annualmente, fin dal 2010, sono istituiti due premi di laurea: uno, intitolato al Prof. G. Raciti https://www.unict.it/it/bandi/diritto-allo-studio/premio-di-laurea-giovanni-racitii, rivolto a studenti che si iscrivono al CdLM in Physics dopo aver conseguito brillantemente la laurea triennale, e uno, intitolato al Prof. R. Giordano https://www.unict.it/it/bandi/diritto-allo-studio/premio-di-laurea-roberto-giordano-2, rivolto a laureati che hanno conseguito brillantemente la laurea magistrale in Physics.

E' di recente istituzione (giugno 2020) una iniziativa promossa dal Dipartimento di Fisica e Astronomia 'Ettore Majorana', che prevede l'assegnazione di due Premi di Studio di 500 euro ciascuno. I premi sono destinati a 2 studenti/studentesse immatricolatisi nell'A.A. precedente al Corso di Laurea Magistrale in Physics che abbiano sostenuto tutti gli esami degli insegnamenti del primo anno alla data della delibera di Dipartimento. I premi sono assegnati sulla base delle materie del primo anno, stilando una graduatoria di merito.

Si segnala anche che il CSFNSM ha emesso nel marzo 2021 un bando per per 3 borse per giovani laureati magistrali e un altro bando per 4 borse di studio per laureandi in Fisica. Inoltre nel dicembre 2021 sono stati emessi altri due bandi di 3 borse per laureandi.

Inoltre l'INFN mette annualmente a disposizione dei Laurendi del CdS Magistrale in Fisica borse di studio da fruire presso uno dei 4 Laboratori Nazionali dell'INFN (LNS, LNL, LNGS, LNF) o presso un Laboratorio estero (ad esempio GANIL-Francia, GSI-Germania, CERN-Svizzera, etyc.) per svolgere le attività relative al loro lavoro di Tesi.

Nel DFA sono favorite e costantemente potenziate diverse attività seminariali in collaborazione con enti di ricerca e rappresentanti del mondo del lavoro (spesso partner di progetti finanziati dalla Comunità Europea), favorendo così un utile e aggiornato flusso di informazioni per gli studenti del CdS (un elenco degli Eventi organizzati presso il DFA è reperibile al link: https://www.dfa.unict.it/it/eventi).

Diverse altre attività hanno lo scopo di contribuire all'inserimento dei laureati negli Enti di ricerca e nelle Aziende: contatti con Enti di ricerca e Aziende sul territorio e in ambito nazionale per fornire informazioni sulle capacità professionali acquisite dal laureato magistrale in Physics; somministrazione di questionari agli Enti e alle Aziende per focalizzare le specializzazioni che presentano maggiore interesse.

Inoltre, è ormai consolidata (dal 2015) la richiesta ai laureandi di riassumere in una brochure l'argomento e i principali risultati ottenuti nel loro lavoro di tesi. Tali brochures sono spendibili poi in eventuali colloqui di lavoro o domande per l'ingresso nei dottorati (vedere ad esempio nel sito del CdLM http://www.dfa.unict.it/it/corsi/lm-17/tesi-di-laurea-magistrale).

Recentemente, per promuovere il carattere internazionale del CdS, è stata creata una pagina web 'Messengers' (https://www.dfa.unict.it/it/messengers), che raccoglie le testimonianze degli studenti non-EU iscritti al CdS, degli studenti Erasmus (incoming e outgoing) e degli studenti internazionali appartenenti al Curriculum NucPhys.

Nell'ambito delle iniziative relative alla cosiddetta Terza Missione, il Dipartimento di Fisica e Astronomia organizza attività di promozione culturale per gli studenti universitari. Informazioni sono disponibili a questo link: https://www.dfa.unict.it/it/content/missione-culturale-e-sociale.

Da segnalare infine che l'Ente regionale per il diritto allo studio universitario (ERSU, www.ersucatania.it) eroga i seguenti servizi per gli studenti:

Servizi Abitativi

Servizi di Ristorazione

Servizi e Sussidi per Studenti Disabili

Attività Culturali, Ricreative, Turistiche e Sportive

Servizi di Informazione e Orientamento

Attività di Cooperazione con Associazioni Studentesche

Si occupa inoltre di facilitare il percorso universitario attraverso benefici economici come borse di studio, premi, sussidi straordinari, borse per la mobilità internazionale.

Descrizione link: Perchè studiare Fisica a Catania

Opinioni studenti

12/09/2022

L'Ateneo di Catania rileva ogni anno le opinioni degli studenti e dei docenti sull'attività didattica svolta, attraverso un questionario (OPIS), le cui procedure di somministrazione e pubblicazione sono definite nelle Linee guida proposte dal Presidio di Qualità e approvate dal CdA.

A partire dall'A.A. 2020-21, l'Ateneo ha implementato la versione inglese delle schede OPIS, al fine di consentirne la compilazione agli studenti stranieri.

In tutte le rilevazioni viene garantito agli studenti l'anonimato; la procedura è infatti gestita da un sistema indipendente che non registra le credenziali degli utenti. I risultati sono resi disponibili sul portale dell'Ateneo al seguente link.

I dati concernenti le opinioni degli studenti e relativi all'A.A. 2021-22, saranno disponibili a partire dall'11 ottobre 2022, a conclusione della procedura che consente ai docenti che lo richiedano di esprimere il proprio diniego alla pubblicazione dei risultati relativi ai propri insegnamenti.

Tali dati saranno analizzati e discussi in Consiglio di Corso di Studio.

Descrizione link: Opinioni studenti A.A. 20-21

Link inserito: https://pga.unict.it/opis/insegn_cds.php?aa=2021&cds=17N&classe=LM-17

Opinioni dei laureati

12/09/2022

Si riportano le informazioni deducibili dai dati Alma Laurea relativi ai laureati negli ultimi tre anni (2019-2021).

In particolare, la scheda fornita da Alma Laurea, contiene le informazioni disaggregate per due gruppi distinti: gli studenti iscritti al CdS negli ultimi tre anni e gli studenti iscritti da un numero di anni superiore a tre. Nel seguito verranno riportate le informazioni relative a studenti iscritti negli ultimi tre anni.

Laureati 2019

Le informazioni deducibili dal questionario Alma Laurea (anno di laurea 2019) si basano su risposte fornite da 9 laureati della Laurea Magistrale in Physics (il numero totale di laureati è stato pari a 11), iscritti a partire dal 2016.

L'età media alla laurea è di 25,9 anni, il voto medio di laurea è 112,4. La durata media degli studi è pari a 2,6 anni.

L'11,1 % ha svolto periodi di studio all'estero e fra questi il 100 % ha preparato all'estero una parte significativa della tesi di laurea Magistrale. Il numero medio di mesi dedicato alla preparazione della tesi di laurea è pari a 6,1 mesi. Il 22,2 % degli intervistati ha usufruito di borse di studio.

L'88,9 % degli intervistati è complessivamente soddisfatto del corso di Laurea (il 66,7 % risponde decisamente sì e il 22,2 % risponde più si che no). La totalità degli intervistati è soddisfatta dei rapporti con i docenti (il 66,7 % risponde decisamente sì e il 33,3 % risponde più si che no). La totalità dei laureati è soddisfatta dei rapporti con gli altri studenti (l'88,9 % risponde decisamente sì e l'11,1 % risponde più sì che no). Il 77,8 % ritiene che il carico di studi degli insegnamenti sia stato sostenibile (il 55,6 % risponde decisamente sì e il 22,2 % risponde più si che no). Il 100 % intende proseguire gli studi (il 77,8 % in un Dottorato di Ricerca e il 22,2 % in una Scuola di Specializzazione).

Risposte sulla valutazione delle postazioni di informatica: il 100 % dichiara che queste erano presenti e in numero adeguato. La valutazione dei servizi offerte dalle biblioteche sono decisamente positive per il 42,9 % degli intervistati e abbastanza positive per il 57,1 %. Riguardo alla valutazione delle aule, il 44,4 % risponde che queste erano sempre o quasi sempre adeguate.

Il 100 % dichiara che si iscriverebbe di nuovo allo stesso corso di laurea Magistrale, nello stesso Ateneo.

Il questionario Alma Laurea per lo stesso campione di studenti ha inoltre fornito le seguenti informazioni:

Lingue straniere: conoscenza almeno B2 (%)

inglese scritto 66,7

inglese parlato 33,3

francese scritto 11,1

francese parlato 11,1

Strumenti informatici: conoscenza almeno buona (%) navigazione in Internet 100 word processor (elaborazione di testi) 100 fogli elettronici (Excel, ...) 88,9 strumenti di presentazione 100 sistemi operativi 100 multimedia 66,7 linguaggi di programmazione 66,7

data base 33,3.

Laureati 2020

Le informazioni deducibili dal questionario Alma Laurea (anno di laurea 2020) si basano su risposte fornite da 15 laureati della Laurea Magistrale in Physics (il numero totale di laureati è stato pari a 26), iscritti a partire dal 2017.

L'età media alla laurea è di 26,3 anni, il voto medio di laurea è 106,8. La durata media degli studi è pari a 2,5 anni.

Il 13,3 % ha svolto periodi di studio all'estero e fra questi il 50 % ha preparato all'estero una parte significativa della tesi di laurea Magistrale. Il numero medio di mesi dedicato alla preparazione della tesi di laurea è pari a 6,2 mesi. Il 13,3 % degli intervistati ha usufruito di borse di studio.

L'86,6 % degli intervistati è complessivamente soddisfatto del corso di Laurea (il 73,3 % risponde decisamente sì e il 13,3 % risponde più si che no). L'86,7 % degli intervistati è soddisfatta dei rapporti con i docenti (il 60,0 % risponde decisamente sì e il 26,7 % risponde più si che no). Il 93,3 % è soddisfatto dei rapporti con gli altri studenti (il 53,3 % risponde decisamente sì e il 40 % risponde più sì che no). L'80 % ritiene che il carico di studi degli insegnamenti sia stato sostenibile (il 53,3 % risponde decisamente sì e il 26,7 % risponde più si che no). L'80 % intende prosequire dli studi (il 66,7 % in un Dottorato di Ricerca e il 13,3 % in una Scuola di Specializzazione).

Risposte sulla valutazione delle postazioni di informatica: il 30 % dichiara che queste erano presenti e in numero adeguato. La valutazione dei servizi offerte dalle biblioteche sono decisamente positive per il 46,2 % degli intervistati e abbastanza positive per il 38,5 %. Riguardo alla valutazione delle aule, il 33,3 % risponde che queste erano sempre o quasi sempre adeguate.

Il 73,3 % dichiara che si iscriverebbe di nuovo allo stesso corso di laurea Magistrale, nello stesso Ateneo.

Il questionario Alma Laurea per lo stesso campione di studenti ha inoltre fornito le seguenti informazioni:

Lingue straniere: conoscenza almeno B2 (%)

inglese scritto 73.3 inglese parlato 60,0 francese scritto 6,7 francese parlato -

Strumenti informatici: conoscenza almeno buona (%) navigazione in Internet 80 word processor (elaborazione di testi) 73,3 fogli elettronici (Excel, ...) 73,3 strumenti di presentazione 86.7 sistemi operativi 86,7 linguaggi di programmazione 46,7 data base 13,3.

Laureati 2021 (dati aggiornati ad aprile 2022)

Le informazioni deducibili dal questionario Alma Laurea (anno di laurea 2021) si basano su risposte fornite da 18 laureati della Laurea Magistrale in Physics.

L'età media alla laurea è di 25,6 anni, il voto medio di laurea è 111,3. La durata media degli studi è pari a 2,3 anni.

Il 27,8 % ha svolto periodi di studio all'estero e fra questi il 20 % ha preparato all'estero una parte significativa della tesi di laurea Magistrale. Il numero medio di mesi dedicato alla preparazione della tesi di laurea è pari a 6.2 mesi. Il 27.8 % degli intervistati ha usufruito di borse di studio.

Il 94,4 % degli intervistati è complessivamente soddisfatto del corso di Laurea (il 72,2 % risponde decisamente sì e il 22,2 % risponde più si che no). L'88,9 % degli intervistati è soddisfatto dei rapporti con i docenti (il 72,2 % risponde decisamente sì e il 16,7 % risponde più si che no). L'88,9 % è soddisfatto dei rapporti con gli altri studenti (il 72,2 % risponde decisamente sì e il 16,7 % risponde più sì che no). Il 94,4 % ritiene che il carico di studi degli insegnamenti sia stato sostenibile (il 61,1 % risponde decisamente sì e il 33,3 % risponde più si che no). L'83,3 % intende proseguire gli studi (il 77,8 % in un Dottorato di Ricerca).

Risposte sulla valutazione delle postazioni di informatica: l'87,5 % dichiara che queste erano presenti e in numero adeguato. La valutazione dei servizi offerte dalle biblioteche sono decisamente positive per il 73,3 % degli intervistati e abbastanza positive per il 20,0 %. Riguardo alla valutazione delle aule, il 50,0 % risponde che queste erano sempre o quasi sempre adeguate e il 44,4% spesso adeguate.

L'88,9 % dichiara che si iscriverebbe di nuovo allo stesso corso di laurea Magistrale, nello stesso Ateneo.

Il questionario Alma Laurea per lo stesso campione di studenti ha inoltre fornito le seguenti informazioni:

Lingue straniere: conoscenza almeno B2 (%)

inglese scritto 94.4 inglese parlato 88,9 francese scritto 5,6 francese parlato 5,6

Strumenti informatici: conoscenza almeno buona (%) navigazione in Internet 77,8 word processor (elaborazione di testi) 83,3 fogli elettronici (Excel, ...) 83,3 strumenti di presentazione 83,3 sistemi operativi 72,2 linguaggi di programmazione 50,0 data base 5,6

Descrizione link: Profilo laureati 2021

 $Link\ inserito: \underline{https://www2.almalaurea.it/cgi-php/lau/sondaggi/visualizza.php?}$

 $\underline{anno=2021\&corstipo=LS\&ateneo=70008\&facolta=939\&gruppo=9\&pa=70008\&classe=11020\&corso=tutti\&postcorso=0870107301800001\&isstella=0\&isstella=0\&presiui=1\&disaggregaz.}$

Pdf inserito: visualizza

Descrizione Pdf: Opinione laureati 2021

QUADRO C1

Dati di ingresso, di percorso e di uscita

12/09/2022

Numero di immatricolati:

- A.A. 2018/2019: 27, di cui 5 provenienti da università straniere
- A.A. 2019/2020: 37, di cui 11 provenienti da università straniere
- A.A. 2020/2021: 47, di cui 10 provenienti da università straniere
- A.A. 2021/2022: 30, di cui 11 provenienti da università straniere

DATI DI PERCORSO

Coorte 2018/2019: Il voto di Laurea della triennale è pari a 110 e lode per il 30% degli immatricolati al CLM; è compreso fra 100 e 110 per il 48 %; minore di 100 per il 18 %. Al primo anno: il 41 % degli studenti acquisisce un numero di CFU compreso fra 31 e 60, il 48 % acquisisce un numero di CFU < 30 e l'11 % non sostiene esami. Al secondo anno vi è un abbandono.

Coorte 2019/2020: Il voto di Laurea della triennale è pari a 110 e lode per il 16,6 % degli iscritti al CLM; è compreso fra 100 e 110 per il 40 %; minore di 100 per il 43,4 %.

Coorte 2020/2021: Il voto di Laurea della triennale è pari a 110 e lode per il 21,2 % degli iscritti al CLM; è compreso fra 100 e 110 per il 31,9 %; minore di 100 per il 21,2 %. Per il rimanente 25,7 % il voto di laurea non è noto.

Coorte 2021/2022: Il voto di Laurea della triennale è pari a 110 e lode per il 28,0 % degli iscritti al CLM; è compreso fra 100 e 110 per il 36,0 %; minore di 100 per il 36.0 %.

DATI DI USCITA

Sulla base dei risultati riportati nel questionario Alma Laurea per l'anno 2018, risulta che il numero di laureati è 18, il voto di laurea medio è 110,4, con una valutazione media negli esami di 28,5/30; la durata media degli studi (in anni) è pari a 3,3. Il 21,4 % si laurea in corso e il 42,9 % si laurea con un anno di ritardo.

Inoltre, in base al questionario Alma Laurea per l'anno 2018, disaggregato fra studenti iscritti negli ultimi tre anni e studenti delle coorti precedenti, risulta che per i primi il voto di laurea medio è 111,8 (si ricorda che nelle indagini AlmaLaurea il voto di 110 e lode è posto uguale a 113); la durata degli studi media, in anni, è pari a 2,6; il ritardo alla laurea medio, in anni, è pari a 0,2.

Per il secondo gruppo (studenti delle coorti precedenti), il voto di laurea medio è 108,5; la durata degli studi media, in anni, è pari a 4,4; il ritardo alla laurea medio, in anni, è pari a 1,9.

Il 28,6% degli studenti iscritti negli ultimi tre anni ha svolto periodi di studio all'estero durante il biennio magistrale, contro lo 0% degli studenti delle coorti precedenti.

Sulla base dei risultati riportati nel questionario Alma Laurea per l'**anno 2019**, risulta che il numero di laureati è 20, il voto di laurea medio è 111,8, con una valutazione media negli esami di 28/30; la durata media degli studi (in anni) è pari a 3,3. Il 25 % si laurea in corso e il 35 % si laurea con un anno di ritardo.

Inoltre, in base al questionario Alma Laurea per l'anno 2019, disaggregato fra studenti iscritti negli ultimi tre anni e studenti delle coorti precedenti, risulta che per i primi il voto di laurea medio è 112,4; la durata degli studi media, in anni, è pari a 2,6; il ritardo alla laurea medio, in anni, è pari a 0,6.

Per il secondo gruppo (studenti delle coorti precedenti), il voto di laurea medio è 111; la durata degli studi media, in anni, è pari a 4,3; il ritardo alla laurea medio, in anni, è pari a 2,3.

Il 12,5% degli studenti iscritti negli ultimi tre anni ha svolto periodi di studio all'estero durante il biennio magistrale, contro il 14,3 % degli studenti delle coorti precedenti.

Sulla base dei risultati riportati nel questionario Alma Laurea per l'anno 2020, risulta che il numero di laureati è pari a 38, il voto di laurea medio è 107,9, con una valutazione media negli esami di 27,1/30; la durata media degli studi (in anni) è pari a 3,3. Il 36,8 % si laurea in corso e il 31,6 % si laurea con un anno di ritardo.

Inoltre, in base al questionario Alma Laurea per l'anno 2020, disaggregato fra studenti iscritti negli ultimi tre anni e studenti delle coorti precedenti, risulta che per i primi il voto di laurea medio è 106,8; la durata degli studi media, in anni, è pari a 2,5; il ritardo alla laurea medio, in anni, è pari a 0,5.

Per il secondo gruppo (studenti delle coorti precedenti), il voto di laurea medio è 110,1; la durata degli studi media, in anni, è pari a 5; il ritardo alla laurea medio, in anni, è pari a 3.

Il 13,3 % degli studenti iscritti negli ultimi tre anni ha svolto periodi di studio all'estero durante il biennio magistrale, contro il 27,3 % degli studenti delle coorti precedenti.

Sulla base dei risultati riportati nel questionario Alma Laurea per l'anno 2021, risulta che il numero di laureati è pari a 18, il voto di laurea medio è 111,3, con una valutazione media negli esami di 28,1/30; la durata media degli studi (in anni) è pari a 2,3 anni. Il 72,2 % si laurea in corso e il 27,8 % si laurea con un anno di ritardo.

Inoltre, in base al questionario Alma Laurea per l'anno 2021, disaggregato fra studenti iscritti negli ultimi tre anni e studenti delle coorti precedenti, risulta che per i primi il voto di laurea medio è 106,8; la durata degli studi media, in anni, è pari a 2,3; il ritardo alla laurea medio, in anni, è pari a 0,3.

Il 27.8 % degli studenti iscritti negli ultimi tre anni ha svolto periodi di studio all'estero durante il biennio magistrale.

Per un'analisi dettagliata dei dati, con l'enucleazione delle criticità e dei punti di forza, si rimanda al Rapporto del Riesame Annuale.

QUADRO C2

Efficacia Esterna

12/09/2022

La maggior parte dei laureati del CdL Magistrale in Physics prosegue gli studi preparandosi per l'ammissione al Dottorato di Ricerca in Fisica, in Scienze dei Materiali e in Sistemi complessi per le Scienze Fisiche, Socio-Economiche e della Vita, o alla Scuola di Specializzazione in Fisica medica dell'Università di Catania.

Molti laureati si presentano agli esami di ammissione di Dottorato in altri Atenei italiani ed esteri, ottenendo un notevole successo, occupando spesso i primi posti nelle graduatorie di merito.

Alcuni laureati intraprendono il percorso del Dottorato nella prospettiva di proseguire nell'attività di ricerca con l'auspicabile inserimento lavorativo presso l'Università ovvero presso gli Enti di Ricerca; altri laureati nella prospettiva di uno sbocco lavorativo nell'insegnamento, utilizzano le eventuali opportunità che si presentano per il conseguimento delle relative abilitazioni e infine altri ancora perseguono la prospettiva di inserimento presso gli enti locali e il mondo dell'industria. Al link sottostante è possibile visualizzare la condizione occupazionale rilevata da Alma Laurea nel 2021.

Nella scheda allegata sono sintetizzate le statistiche di ingresso dei laureati nel mondo del lavoro. La banca dati di riferimento che gestisce questa tipologia di dati è ALMALAUREA, con la quale l'Ateneo è consorziato.

Tutti i laureati intervistati ritengono fra molto efficace ed efficace la laurea conseguita ai fini del lavoro svolto esprimendo un grado di soddisfazione compreso fra 7,5 a 1 anno e 8,4 a 5 anni (in una scala da 1 a 10).

Descrizione link: Condizione occupazionale laureati 2021

Link inserito: http://statistiche.almalaurea.it/universita/statistiche/trasparenza?CODICIONE=0870107301800001

Pdf inserito: visualizza

Descrizione Pdf: Opinione laureati 2021

12/09/2022

Il percorso formativo della Laurea Magistrale in Physics ha previsto finora espressamente due cfu per attività di stage o tirocini obbligatori, da svolgere presso enti o aziende. In generale, durante il periodo dedicato alla preparazione della tesi di Laurea, la maggior parte degli studenti svolge attività di studio e di ricerca presso enti di ricerca o aziende convenzionate con l'Ateneo di Catania. A partire dall'A.A. 2019/2020 il nuovo RAD del corso di laurea magistrale in Physics consente l'acquisizione di un numero maggiore di crediti per attività di stage, che, seppure legato esclusivamente alle attività di tesi, può essere svolto anche all'estero. In questa prospettiva, si segnala che nel Regolamento Didattico dell'A.A. 2021/2022, viene specificato che allo studente che svolgerà, in tutto o in parte, il lavoro di ricerca tesi effettuando uno stage presso un ente di ricerca o una azienda convenzionati con l'Università di Catania, verranno attribuiti 5 CFU per ogni mese di stage fino ad un massimo di 6 mesi.

Il contatto degli studenti con le realtà lavorative è garantito comunque e sempre dal fatto che i docenti del Dipartimento di Fisica e Astronomia presso il quale sono incardinati i corsi di Laurea Triennale e Magistrale in Fisica e i corsi di dottorato offrono, direttamente o indirettamente, opportunità di questo tipo per gli studenti del CdLM in Physics. Essi, infatti, svolgono attività di ricerca sia di base che applicativa con ricadute importanti sul territorio, in stretta collaborazione con alcuni enti di ricerca (INFN, INAF, CNR, INFN-LNS, INGV) che presentano delle unità operative proprio sul nostro territorio, da tempo legati al nostro Ateneo mediante rapporti di collaborazione definite da apposite convenzioni. Questa continua collaborazione offre agli studenti l'opportunità di essere coinvolti in prima persona nelle ricerche internazionali di punta e di conoscerne lo stato dell'arte, favorendo spesso l'ingresso dei neolaureati nel mondo del lavoro negli Enti suddetti entro pochi anni dal conseguimento della laurea magistrale.

Nel 2019 nell'ambito delle attività del Comitato di Indirizzo (C.I.) è stato sottoposto un questionario ai rappresentanti di enti e imprese, richiedendo loro un parere sui punti di forza degli studenti e sulle aree di miglioramento. L'esito dell'indagine è riportato nel file allegato.

Nelle riunioni successive del C.I., avvenute il 21/02/2020 e il 18/02/2021, durante la fase di progettazione dell'offerta formativa, la consultazione con i rappresentanti degli enti di ricerca e del mondo del lavoro ha evidenziato ulteriori aspetti, quali ad esempio: la necessità che gli studenti possano entrare in contatto con il mondo del lavoro durante il loro percorso accademico, mediante attività di stage e tirocini; l'individuazione di tematiche che andrebbero sviluppate all'interno del CdS, l'inserimento di insegnamenti che possano fornire maggiori competenze in ambito informatico. Inoltre, sia i rappresentanti degli enti di ricerca che quelli delle imprese si sono dichiarati disponibili ad accogliere gli studenti per attività di tirocinio e a contribuire alla organizzazione di seminari per descrivere le attività del proprio settore.

È da notare infine che il DFA promuove continuamente azioni atte ad aumentare i contatti con nuove realtà lavorative (un esempio è costituito dalle attività promosse dal gruppo EPS Young Minds), sia in ambito locale che nazionale e internazionale, promuovendo inoltre attività di ricerca, specialmente nel settore della Fisica Applicata e azioni atte a reperire nuovi fondi per consentire l'apertura di nuove posizioni a tempo determinato o indeterminato per i nostri laureati. Il successo in programmi europei H2020, progetti nazionali PON e progetti regionali POR ha fornito un utile supporto in questa direzione.

Link inserito: https://www.dfa.unict.it/sites/default/files/documenti sito/ESITO-Questionario%20mondo%20del%20lavoromarzo2019.pdf

QUADRO D1

Struttura organizzativa e responsabilità a livello di Ateneo

14/04/2022

Istituito nell'A.A. 2012/13, il Presidio della Qualità dell'Ateneo (PQA) è responsabile dell'organizzazione, del monitoraggio e della supervisione delle procedure di Assicurazione della qualità (AQ) di Ateneo. Il focus delle attività che svolge, in stretta collaborazione con il Nucleo di Valutazione e con l'Agenzia nazionale di valutazione del sistema universitario e della ricerca, è definito dal Regolamento di Ateneo (art. 9)

Compiti istituzionali

Nell'ambito delle attività didattiche, il Presidio organizza e verifica il continuo aggiornamento delle informazioni contenute nelle banche dati ministeriali di ciascun corso di studio dell'Ateneo, sovrintende al regolare svolgimento delle procedure di AQ per le attività didattiche, organizza e monitora le rilevazioni dell'opinione degli studenti, dei laureandi e dei laureati mantenendone l'anonimato, regola e verifica le attività periodiche di riesame dei corsi di studio, valuta l'efficacia degli interventi di miglioramento e le loro effettive conseguenze, assicura il corretto flusso informativo da e verso il Nucleo di Valutazione e la Commissione Paritetica Docenti-Studenti.

Nell'ambito delle attività di ricerca, il Presidio verifica il continuo aggiornamento delle informazioni contenute nelle banche dati ministeriali di ciascun dipartimento, sovraintende al regolare svolgimento delle procedure di AQ per le attività di ricerca, valuta l'efficacia degli interventi di miglioramento e le loro effettive conseguenze e assicura il corretto flusso informativo da e verso il Nucleo di Valutazione.

Il PQA svolge inoltre un ruolo di consulenza verso gli organi di governo e di consulenza, supporto e monitoraggio ai corsi di studio e alle strutture didattiche per lo sviluppo dei relativi interventi di miglioramento nelle attività formative o di ricerca.

Le politiche di qualità sono polarizzate sulla 'qualità della didattica' e sulle politiche di ateneo atte ad incrementare la centralità dello studente anche nella definizione delle strategie complessive. Gli obiettivi fondanti delle politiche di qualità sono funzionali:

- alla creazione di un sistema Unict di Assicurazione interna della qualità (Q-Unict Brand);
- ad accrescere costantemente la qualità dell'insegnamento (stimolando al contempo negli studenti i processi di apprendimento), della ricerca (creando un sistema virtuoso di arruolamento di docenti/ricercatori eccellenti), della trasmissione delle conoscenze alle nuove generazioni e al territorio (il monitoraggio della qualità delle attività formative di terzo livello, delle politiche di placement e di tirocinio post-laurea, dei master e delle scuole di specializzazione ha ruolo centrale e prioritario. Il riconoscere le eccellenze, incentivandole, è considerato da Unict fattore decisivo di successo);
- a definire standard e linee guida per la 'qualità dei programmi curricolari' e per il 'monitoraggio dei piani di studio', con particolare attenzione alla qualità delle competenze / conoscenze / capacità trasmesse, dipendenti principalmente dalle metodologie di apprendimento / insegnamento e dal loro costante up-grading e aggiornamento con l'ausilio anche delle lct; -ad aumentare negli studenti il significato complessivo dell'esperienza accademica da studenti fino a farla diventare fattore fondante e strategico nella successiva vita sociale e professionale.

Composizione

Il Presidio della Qualità dell'Ateneo di Catania è costituito dal Rettore (o suo delegato), 6 docenti e 1 rappresentante degli studenti

(art. 9, Regolamento di Ateneo).

Link inserito: http://www.unict.it/it/ateneo/presidio-della-qualit%C3%A0

14/04/2022

A livello di Corso di Laurea Magistrale, l'AQ è svolta dai docenti:

- Prof. Riccardo Reitano (Presidente del CdL Magistrale in Physics)
- Prof. Francesco Pellegrino (Ricercatore RTd-B di FIS/03)
- Prof. Francesco Riggi (Professore Ordinario di FIS/01)
- Prof. Francesco Ruffino (Professore Associato di FIS/01)
- Dott.ssa Sara De Francisci (Segreteria Didattica)
- Dott. Antonino Pitronaci (Rappresentante degli Studenti)
- Dott. Massimo Germanà (Rappresentante degli Studenti)

Sono compiti del Gruppo di Gestione per l'Assicurazione della Qualità (GGAQ) del CdS:

- la valutazione della congruenza tra gli obiettivi programmati e quelli raggiunti in merito all'attività didattica.
- la valutazione del livello di soddisfazione degli studenti espressa mediante le schede di valutazione somministrate nel corso dell'A.A.
- la valutazione del raggiungimento degli obiettivi formativi entro i termini previsti dal normale percorso dei piani di studio
- l'assistenza e collaborazione alla redazione dei documenti rilevanti per la presentazione e la descrizione del CdS nonché per la valutazione della sua qualità, come gli stessi quadri della SUA.

Il gruppo si consulta prima di ogni riunione del Consiglio di Corso di Laurea quando sono previste all'OdG eventuali delibere strettamente riferite all'Offerta formativa del CdLM, per verificare come vengano attuate le attività decise per migliorare la qualità del corso e per studiare eventuali proposte da sottoporre all'approvazione del Consiglio.

Il gruppo inoltre agisce in occasione della redazione dei documenti sulla qualità.

Il ruolo svolto dalla componente studentesca nel GGAQ del CdS, così come nella Commissione Qualità di Dipartimento, è ritenuto essenziale ed è basato su una periodica e costante consultazione degli studenti che, tramite i loro rappresentanti, portano all'attenzione specifiche richieste e proposte volte alla rimodulazione, alla riorganizzazione e quindi al miglioramento del corso di laurea.

Ad esempio, in relazione alle effettive potenzialità occupazionali dei laureati in Physics, grazie alle consultazioni con i rappresentanti degli studenti in Commissione Qualità di Dipartimento, è scaturita la proposta di inserire nell'ambito degli annuali seminari di orientamento, svolti dai referenti dei vari curricula e rivolti agli studenti del corso di laurea triennale che intendono iscriversi al corso di laurea magistrale, testimonianze di esponenti del mondo del lavoro. Questa proposta è stata favorevolmente recepita dal CdS e i suddetti seminari di orientamento vengono organizzati annualmente prevedendo, per ogni curriculum del corso di laurea magistrale, numerosi interventi di esponenti del mondo del lavoro che hanno illustrato agli studenti le effettive potenzialità occupazionali dei laureati magistrali in Physics, oltre che le possibilità connesse all'eventuale proseguimento degli studi nei corsi di dottorato incardinati presso il DFA (Dottorato in Fisica, in Sistemi complessi per le scienze fisiche, socio-economiche e della vita e in Scienza dei Materiali e Tecnologie) e nella scuola di specializzazione in fisica medica (https://www.dfa.unict.it/it/content/msc-physics-which-curriculum).

Descrizione link: Gruppo di Gestione dell'Assicurazione della Qualità del CdS

Link inserito: http://www.dfa.unict.it/it/corsi/lm-17/gruppo-di-gestione-di-assicurazione-della-qualit%C3%A0-lm-17

14/04/2022

Il GGAQ del CdS prevede di programmare degli incontri prestabiliti in prossimità delle scadenze annuali:

Entro settembre: Compilazione quadri scheda SUA con scadenza fine settembre e Analisi delle opinioni degli studenti (schede OPIS) e dei laureati (sondaggi Alma Laurea);

Entro dicembre: Compilazione SMA / RRC

Entro febbraio: Compilazione RAAQ

Entro prima settimana di maggio Compilazione quadri Scheda SUA con scadenza maggio.

Periodicamente, e comunque almeno una volta per anno, durante la fase di Programmazione Didattica per l'A.A. successivo, si prevede la convocazione del Comitato di Indirizzo

Riesame annuale

20/09/2019

Descrizione link: Documenti per l'Assicurazione della Qualità Link inserito: http://www.dfa.unict.it/corsi/lm-17/documenti

Progettazione del CdS

20/09/2019

Descrizione link: Progettazione del CdLM17

Pdf inserito: visualizza

Eventuali altri documenti ritenuti utili per motivare l'attivazione del Corso di Studio

•

Informazioni generali sul Corso di Studi

Università	Università degli Studi di CATANIA
Nome del corso in italiano	Fisica
Nome del corso in inglese	Physics
Classe	LM-17 - Fisica
Lingua in cui si tiene il corso	inglese
Eventuale indirizzo internet del corso di laurea	http://www.dfa.unict.it/corsi/LM-17
Tasse	https://www.unict.it/didattica/tassa-d%E2%80%99iscrizione-e-contributi
Modalità di svolgimento	a. Corso di studio convenzionale

Corsi interateneo

Questo campo dev'essere compilato solo per corsi di studi interateneo,

Un corso si dice "interateneo" quando gli Atenei partecipanti stipulano una convenzione finalizzata a disciplinare direttamente gli obiettivi e le attività formative di un unico corso di studi, che viene attivato congiuntamente dagli Atenei coinvolti, con uno degli Atenei che (anche a turno) segue la gestione amministrativa del corso. Gli Atenei coinvolti si accordano altresì sulla parte degli insegnamenti che viene attivata da ciascuno; deve essere previsto il rilascio a tutti gli studenti iscritti di un titolo di studio congiunto, doppio o multiplo.

Non sono presenti atenei in convenzione

Presidente (o Referente o Coordinatore) del CdS	REITANO Riccardo
Organo Collegiale di gestione del corso di studio	Consiglio di Corso di Laurea Magistrale in Physics
Struttura didattica di riferimento	Fisica ed Astronomia "Ettore Majorana"

Docenti di Riferimento

N.	CF	COGNOME	NOME	SETTORE	MACRO SETTORE	QUALIFICA	PESO	INSEGNAMENTO ASSOCIATO
1.	NGLGPP71D06C351E	ANGILELLA	Giuseppe Gioacchino Neil	FIS/03	02/B	PA	1	
2.	BRNVCN61C12C351N	BRANCHINA	Vincenzo	FIS/02	02/A	PA	1	
3.	CPPFNC72H26H163T	CAPPUZZELLO	Francesco	FIS/04	02/A	PA	1	
4.	CRSRSL72S57B715D	CARUSO	Rossella	FIS/01	02/B	PA	1	
5.	DLPNNN65E30F400L	DEL POPOLO	Antonino	FIS/05	02/C	RU	1	
6.	FLCGPP61D23C351V	FALCI	Giuseppe	FIS/03	02/B	РО	0,5	
7.	GRCVCN74H18E017B	GRECO	Vincenzo	FIS/02	02/A	РО	1	
8.	GLUNMR68M48B429F	GUELI	Anna Maria	FIS/07	02/D	PA	0,5	
9.	LNZLSN61H11C351U	LANZAFAME	Alessandro Carmelo	FIS/05	02/C	PA	0,5	
10.	LPRDNC71R25G273O	LO PRESTI	Domenico	FIS/01	02/B	PA	1	
11.	MRBSVT76E31C351B	MIRABELLA	Salvatore	FIS/03	02/B	PA	1	
12.	PLDLBT67T54G273W	PALADINO	Elisabetta	FIS/03	02/B	PA	0,5	

13.	PLTGPP69S29C351V	POLITI	Giuseppe	FIS/01	02/B	PA	0,5	
14.	RPSNDR60A14C351I	RAPISARDA	Andrea	FIS/02	02/A	PA	1	
15.	STLGPP75H18I754B	STELLA	Giuseppe	FIS/07	02/D	RD	0,5	
16.	TRRFLC83L30C351Q	TORRISI	Felice	FIS/03	02/B	PA	1	
17.	TRCLSR71C67C351G	TRICOMI	Alessia Rita Serena Maria Ausilia	FIS/01	02/B	РО	1	
18.	ZCCFNC54L71F250X	ZUCCARELLO	Francesca	FIS/06	02/C	PA	1	

Tutti i requisiti docenti soddisfatti per il corso :

Fisica

Rappresentanti Studenti

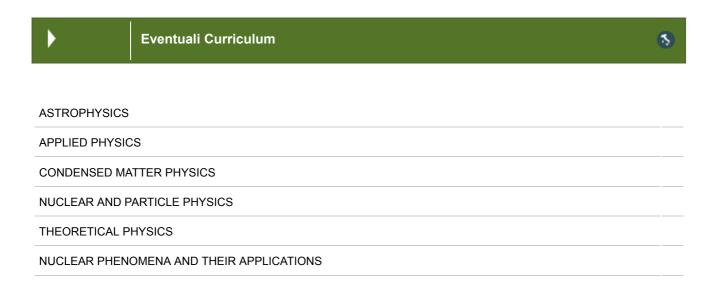
COGNOME	NOME	EMAIL	TELEFONO
Germanà	Massimo	massimogermana@outlook.it	
La Magna	Paola	paola.lamagna.97@gmail.com	
Pernace	Arcangelo	arcangelopernace@gmail.com	
Pitronaci	Antonino	uni362183@studium.unict.it	
Saia	Clara	clara.saia.1997@gmail.com	
Spina	Andrea	andreaspina99@gmail.com	
Ursino	Federico	ursino.federico99@gmail.com	

Gruppo di gestione AQ

COGNOME	NOME
DE FRANCISCI	SARA
GERMANA'	MASSIMO
PELLEGRINO	FRANCESCO M. D.

PITRONACI	ANTONINO
REITANO	RICCARDO
RIGGI	FRANCESCO
RUFFINO	FRANCESCO

Þ


Tutor

COGNOME	NOME	EMAIL	TIPO
ANGILELLA	Giuseppe Gioacchino Neil		
ROMANO	Stefano		
BRANCHINA	Vincenzo		
GRIMALDI	Maria Grazia		
LANZAFAME	Alessandro Carmelo		
LEONE	Francesco		
LO PRESTI	Domenico		
PLUCHINO	Alessandro		
POLITI	Giuseppe		
RAPISARDA	Andrea		
TRICOMI	Alessia Rita Serena Maria Ausilia		
TERRASI	Antonio		
ZUCCARELLO	Francesca		
FALCI	Giuseppe		
PALADINO	Elisabetta		
GUELI	Anna Maria		
GRECO	Vincenzo		
CARUSO	Rossella		
PETTA	Catia Maria Annunziata		
MIRABELLA	Salvatore		
ALBERGO	Sebastiano Francesco		
PICCITTO	Giovanni Maria		
CAPPUZZELLO	Francesco		
PELLEGRINO	Francesco Maria Dimitri		

Programmazione degli accessi Programmazione nazionale (art.1 Legge 264/1999) No Programmazione locale (art.2 Legge 264/1999) No

•	Sedi del Corso	5)
----------	----------------	----

Sede del corso:via Santa Sofia 64 95123 - CATANIA	
Data di inizio dell'attività didattica	01/10/2022
Studenti previsti	40

Altre Informazioni R^aD

Codice interno all'ateneo del corso	17N
Massimo numero di crediti riconoscibili	12 DM 16/3/2007 Art 4 Nota 1063 del 29/04/2011

Date delibere di riferimento RaD

Data di approvazione della struttura didattica	04/04/2019
Data di approvazione del senato accademico/consiglio di amministrazione	16/04/2019
Data della consultazione con le organizzazioni rappresentative a livello locale della produzione, servizi, professioni	06/10/2008
Data del parere favorevole del Comitato regionale di Coordinamento	01/03/2013

Sintesi della relazione tecnica del nucleo di valutazione

Il Nucleo, prende atto che la modifica riguarda l'introduzione di un nuovo SSD tra le attività affini e la variazione dei CFU attribuiti alle attività caratterizzanti e, rilevato che ciò non incide sulla congruenza tra obiettivi formativi e ordinamento didattico, esprime parere favorevole.

Relazione Nucleo di Valutazione per accreditamento

La relazione completa del NdV necessaria per la procedura di accreditamento dei corsi di studio deve essere inserita nell'apposito spazio all'interno della scheda SUA-CdS denominato "Relazione Nucleo di Valutazione per accreditamento" entro e non oltre il 28 febbraio di ogni anno **SOLO per i corsi di nuova istituzione**. La relazione del Nucleo può essere

redatta seguendo i criteri valutativi, di seguito riepilogati, dettagliati nelle linee guida ANVUR per l'accreditamento iniziale dei Corsi di Studio di nuova attivazione, consultabili sul sito dell'ANVUR
Linee guida ANVUR

- 1. Motivazioni per la progettazione/attivazione del CdS
- 2. Analisi della domanda di formazione
- 3. Analisi dei profili di competenza e dei risultati di apprendimento attesi
- 4. L'esperienza dello studente (Analisi delle modalità che verranno adottate per garantire che l'andamento delle attività formative e dei risultati del CdS sia coerente con gli obbiettivi e sia gestito correttamente rispetto a criteri di qualità con un forte impegno alla collegialità da parte del corpo docente)
- 5. Risorse previste
- 6. Assicurazione della Qualità

Il Nucleo, prende atto che la modifica riguarda l'introduzione di un nuovo SSD tra le attività affini e la variazione dei CFU attribuiti alle attività caratterizzanti e, rilevato che ciò non incide sulla congruenza tra obiettivi formativi e ordinamento didattico, esprime parere favorevole.

Sintesi del parere del comitato regionale di coordinamento RaD

•

	coorte	CUIN	insegnamento	settori insegnamento	docente	settore docente	ore di didattica assistita
1	2022	082208802	ACCELERATOR PHYSICS AND APPLICATIONS semestrale	FIS/07	David MASCALI		<u>42</u>
2	2022	082208799	ADVANCED NUCLEAR TECHNIQUES APPLIED TO MEDICINE semestrale	FIS/01	Giorgio RUSSO		42
3	2022	082208749	ADVANCED QUANTUM MECHANICS semestrale	FIS/02	Docente di riferimento Vincenzo GRECO Professore Ordinario (L. 240/10)	FIS/02	<u>50</u>
4	2022	082208751	ADVANCED STATISTICAL MECHANICS semestrale	FIS/02	Docente di riferimento Andrea RAPISARDA Professore Associato confermato	FIS/02	<u>50</u>
5	2022	082208768	ARCHAEOMETRY semestrale	FIS/07	Docente di riferimento (peso .5) Anna Maria GUELI Professore Associato (L. 240/10)	FIS/07	<u>21</u>
6	2022	082208768	ARCHAEOMETRY semestrale	FIS/07	Docente di riferimento (peso .5) Giuseppe STELLA Ricercatore a t.d t.pieno (art. 24 c.3-b L. 240/10)	FIS/07	29
7	2022	082208775	ASTROPARTICLE PHYSICS semestrale	FIS/04	Docente di riferimento Alessia Rita Serena Maria Ausilia TRICOMI Professore Ordinario (L. 240/10)	FIS/01	21
8	2022	082208775	ASTROPARTICLE PHYSICS semestrale	FIS/04	Giorgio Maria RICCOBENE		<u>21</u>
9	2022	082208731	ASTROPHYSICS semestrale	FIS/05	Alessandro Carmelo LANZAFAME <i>Professore</i>	FIS/05	42

Associato (L.	
240/10)	
· · · · · · · · · · · · · · · · · · ·	

					240/10)		
10	2022	082210493	ASTROPHYSICS LABORATORY semestrale	FIS/01	Giuseppe PUGLISI Ricercatore a t.d t.pieno (art. 24 c.3-a L. 240/10) Università degli Studi di ROMA "Tor Vergata"	FIS/05	28
11	2022	082210493	ASTROPHYSICS LABORATORY semestrale	FIS/01	Maria Letizia Piera PUMO Ricercatore a t.d t.pieno (art. 24 c.3-b L. 240/10)	FIS/05	<u>30</u>
12	2022	082208760	ATOMIC AND PLASMA PHYSICS semestrale	FIS/02	Docente non specificato		42
13	2022	082208759	BASIC EXPERIMENTAL AND APPLIED LABORATORY semestrale	FIS/07	Docente non specificato		66
14	2022	082208758	BASIC NUCLEAR PHYSICS semestrale	FIS/04	Docente non specificato		42
15	2021	082206046	BIOPHYSICS semestrale	FIS/07	Luca LANZANO' Professore Associato (L. 240/10)	FIS/07	42
16	2021	082204397	COMMON ADVANCED COURSE semestrale	FIS/04	Docente non specificato		42
17	2021	082206048	COMPUTATIONAL QUANTUM OPTICS semestrale	FIS/03	Alessandro RIDOLFO Professore Associato (L. 240/10)	FIS/03	<u>50</u>
18	2022	082208757	COMPUTING AND NUMERICAL METHODS semestrale	FIS/02	Docente non specificato		50
19	2021	082204402	COSMIC RAY PHYSICS semestrale	FIS/05	Docente di riferimento Rossella CARUSO Professore Associato (L. 240/10)	FIS/01	<u>42</u>
20	2021	082206079	DATA ANALYSIS TECHNIQUES FOR NUCLEAR AND PARTICLE PHYSICS semestrale	FIS/04	Docente di riferimento (peso .5) Giuseppe POLITI Professore Associato confermato	FIS/01	30
21	2021	082206079	DATA ANALYSIS TECHNIQUES FOR NUCLEAR AND PARTICLE PHYSICS semestrale	FIS/04	Luciano PANDOLA		28

22	2022	082208797	ELECTRONICS AND APPLICATIONS semestrale	FIS/01	Docente di riferimento Domenico LO PRESTI Professore Associato (L. 240/10)	FIS/01	<u>42</u>
23	2021	082206121	ELEMENTARY PARTICLE PHYSICS I (modulo di ELEMENTARY PARTICLE PHYSICS) semestrale	FIS/04	Docente di riferimento Alessia Rita Serena Maria Ausilia TRICOMI Professore Ordinario (L. 240/10)	FIS/01	<u>42</u>
24	2021	082206122	ELEMENTARY PARTICLE PHYSICS II (modulo di ELEMENTARY PARTICLE PHYSICS) semestrale	FIS/01	Docente di riferimento Alessia Rita Serena Maria Ausilia TRICOMI Professore Ordinario (L. 240/10)	FIS/01	<u>21</u>
25	2022	082208798	ENVIRONMENTAL RADIOACTIVITY semestrale	FIS/01	Giuseppe Gabriele RAPISARDA Ricercatore a t.d t.pieno (art. 24 c.3-a L. 240/10)	FIS/01	<u>14</u>
26	2022	082208798	ENVIRONMENTAL RADIOACTIVITY semestrale	FIS/01	Stefano ROMANO Professore Ordinario (L. 240/10)	FIS/04	<u>28</u>
27	2022	082208787	EXPERIMENTAL METHODS FOR NUCLEAR PHYSICS semestrale	FIS/01	Agatino MUSUMARRA Professore Associato confermato	FIS/01	<u>66</u>
28	2022	082208786	EXPERIMENTAL METHODS FOR PARTICLE PHYSICS semestrale	FIS/01	Sebastiano Francesco ALBERGO Professore Ordinario	FIS/01	<u>21</u>
29	2022	082208786	EXPERIMENTAL METHODS FOR PARTICLE PHYSICS semestrale	FIS/01	Catia Maria Annunziata PETTA Professore Associato (L. 240/10)	FIS/01	<u>45</u>
30	2021	082204401	EXTRAGALACTIC ASTRONOMY AND COSMOLOGY semestrale	FIS/05	Docente di riferimento Antonino DEL POPOLO Ricercatore confermato	FIS/05	42
31	2022	082208753	GENERAL RELATIVITY semestrale	FIS/05	Alfio Maurizio BONANNO		<u>42</u>

32	2021	082206124	HEAVY IONS PHYSICS (modulo di HEAVY IONS PHYSICS AT INTERMEDIATE AND HIGH ENERGY) semestrale	FIS/04	Elena Irene GERACI Ricercatore confermato	FIS/04	42
33	2021	082206125	HIGH ENERGY PHYSICS (modulo di HEAVY IONS PHYSICS AT INTERMEDIATE AND HIGH ENERGY) semestrale	FIS/01	Cristina Natalina TUVE' Professore Associato confermato	FIS/01	21
34	2022	082208767	IMAGE ANALYSIS AND FUNDAMENTALS OF DOSIMETRY semestrale	FIS/07	Docente di riferimento (peso .5) Anna Maria GUELI Professore Associato (L. 240/10)	FIS/07	<u>21</u>
35	2022	082208767	IMAGE ANALYSIS AND FUNDAMENTALS OF DOSIMETRY semestrale	FIS/07	Docente di riferimento (peso .5) Giuseppe STELLA Ricercatore a t.d t.pieno (art. 24 c.3-b L. 240/10)	FIS/07	<u>21</u>
36	2022	082208801	MACHINE LEARNING FOR PHYSICS semestrale	FIS/01	Marco RUSSO Professore Ordinario	INF/01	<u>50</u>
37	2022	082208771	MAGNETOHYDRODYNAMICS AND PLASMA PHYSICS semestrale	FIS/06	Docente di riferimento Francesca ZUCCARELLO Professore Associato confermato	FIS/06	42
38	2021	082204454	MANY-BODY THEORY semestrale	FIS/03	Docente di riferimento Giuseppe Gioacchino Neil ANGILELLA Professore Associato confermato	FIS/03	42
39	2022	082208739	MATERIALS AND NANOSTRUCTURES LABORATORY semestrale	FIS/01	Mario URSO		<u>66</u>
40	2022	082208800	MEDICAL PHYSICS semestrale	FIS/07	Giuseppe Antonio Pablo CIRRONE		<u>42</u>
41	2022	082208778	MESOSCOPIC AND TOPOLOGICAL MATERIALS semestrale	FIS/02	Francesco Maria Dimitri PELLEGRINO Ricercatore a t.d t.pieno (art. 24 c.3-b L. 240/10)	FIS/03	42
42	2022	082208744	NUCLEAR AND PARTICLE PHYSICS I	FIS/01	Docente di riferimento	FIS/01	<u>21</u>

			(modulo di NUCLEAR AND PARTICLE PHYSICS) semestrale		Alessia Rita Serena Maria Ausilia TRICOMI Professore Ordinario (L. 240/10)		
43	2022	082208745	NUCLEAR AND PARTICLE PHYSICS II (modulo di NUCLEAR AND PARTICLE PHYSICS) semestrale	FIS/04	Docente di riferimento Alessia Rita Serena Maria Ausilia TRICOMI Professore Ordinario (L. 240/10)	FIS/01	42
44	2022	082208766	NUCLEAR AND PARTICLE PHYSICS II semestrale	FIS/04	Docente di riferimento Alessia Rita Serena Maria Ausilia TRICOMI Professore Ordinario (L. 240/10)	FIS/01	42
45	2022	082208746	NUCLEAR AND PARTICLE PHYSICS LABORATORY semestrale	FIS/01	Docente di riferimento (peso .5) Giuseppe POLITI Professore Associato confermato	FIS/01	66
46	2022	082208774	NUCLEAR ASTROPHYSICS semestrale	FIS/04	Livio LAMIA Professore Associato (L. 240/10)	FIS/01	<u>21</u>
47	2022	082208774	NUCLEAR ASTROPHYSICS semestrale	FIS/04	Stefano ROMANO Professore Ordinario (L. 240/10)	FIS/04	21
48	2022	082208790	NUCLEAR REACTION THEORY semestrale	FIS/02	Maria COLONNA		<u>50</u>
49	2021	082204444	NUCLEAR STRUCTURE semestrale	FIS/04	Docente di riferimento Francesco CAPPUZZELLO Professore Associato (L. 240/10)	FIS/04	<u>50</u>
50	2022	082208776	PHOTONICS semestrale	FIS/03	Maria Jose' LO FARO Ricercatore a t.d t.pieno (art. 24 c.3-a L. 240/10)	FIS/07	42
51	2022	082210494	PHYSICS AND TECHNOLOGY OF MATERIALS semestrale	FIS/01	Antonio TERRASI <i>Professore</i>	FIS/01	42

Ordinario (L. 240/10)	

62	2022	082208780	SEMICONDUCTOR PHYSICS AND TECHNOLOGY semestrale	FIS/03	Docente di riferimento Salvatore MIRABELLA Professore	FIS/03	42
61	2021	082206005	RADIOASTRONOMY semestrale	FIS/05	Corrado TRIGILIO		42
60	2022	082208779	QUANTUM PHASES OF MATTER semestrale	FIS/02	Dario Gaetano ZAPPALA'		42
59	2022	082208756	QUANTUM MECHANICS semestrale	FIS/02	Docente non specificato		50
58	2021	082206047	QUANTUM INFORMATION AND FOUNDATIONS semestrale	FIS/03	Docente di riferimento (peso .5) Giuseppe FALCI Professore Ordinario (L. 240/10)	FIS/03	<u>50</u>
57	2022	082208755	QUANTUM FIELD THEORY -II semestrale	FIS/02	Docente di riferimento Vincenzo BRANCHINA Professore Associato confermato	FIS/02	<u>50</u>
56	2022	082208752	QUANTUM FIELD THEORY - I semestrale	FIS/02	Docente di riferimento Vincenzo BRANCHINA Professore Associato confermato	FIS/02	<u>50</u>
55	2022	082208730	PLASMA SPECTROSCOPY semestrale	FIS/03	Alessandro Carmelo LANZAFAME Professore Associato (L. 240/10)	FIS/05	42
54	2021	082204392	PHYSICS OF NANOSTRUCTURES semestrale	FIS/01	Francesco RUFFINO Professore Associato (L. 240/10)	FIS/01	<u>42</u>
53	2022	082208788	PHYSICS OF COMPLEX SYSTEMS semestrale	FIS/02	Docente di riferimento Andrea RAPISARDA Professore Associato confermato	FIS/02	<u>50</u>
52	2022	082208777	PHYSICS AND TECHNOLOGY OF TWO-DIMENSIONAL MATERIALS AND DEVICES semestrale	FIS/03	Docente di riferimento Felice TORRISI Professore Associato confermato	FIS/03	42
					240/10)		

Associato	(L.
240/10)	-

						ore totali	2779
69	2022	082208789	THEORY OF STRONG INTERACTIONS semestrale	FIS/02	Docente di riferimento Vincenzo GRECO Professore Ordinario (L. 240/10)	FIS/02	<u>50</u>
68	2022	082208781	SUPERCONDUCTIVITY AND SUPERFLUIDITY semestrale	FIS/03	Elisabetta PALADINO Professore Associato (L. 240/10)	FIS/03	42
67	2021	082204395	STANDARD MODEL THEORY semestrale	FIS/02	Salvatore PLUMARI Professore Associato (L. 240/10)	FIS/02	<u>50</u>
66	2021	082204426	SPECTROSCOPY semestrale	FIS/03	Riccardo REITANO Professore Associato confermato	FIS/03	<u>42</u>
65	2021	082204387	SPACE PHYSICS semestrale	FIS/05	Giulio MANICO' Ricercatore confermato	FIS/01	<u>42</u>
64	2022	082208736	SOLID-STATE PHYSICS semestrale	FIS/03	Docente di riferimento Giuseppe Gioacchino Neil ANGILELLA Professore Associato confermato	FIS/03	42
63	2022	082208732	SOLAR PHYSICS semestrale	FIS/05	Docente di riferimento Francesca ZUCCARELLO Professore Associato confermato	FIS/06	<u>50</u>
					ASSOCIATO (L. 240/10)		

Curriculum: ASTROPHYSICS

Attività caratterizzanti	settore	CFU Ins	CFU Off	CFU Rad
Sperimentale applicativo	FIS/01 Fisica sperimentale ASTROPHYSICS LABORATORY (1 anno) - 6 CFU - semestrale - obbl	6	6	6 - 36
Teorico e dei fondamenti della fisica	FIS/02 Fisica teorica modelli e metodi matematici ADVANCED QUANTUM MECHANICS (1 anno) - 6 CFU - semestrale - obbl	6	6	6 - 36
Microfisico e della struttura della materia	FIS/03 Fisica della materia PLASMA SPECTROSCOPY (1 anno) - 6 CFU - semestrale - obbl FIS/04 Fisica nucleare e subnucleare NUCLEAR ASTROPHYSICS (1 anno) - 6 CFU - semestrale ASTROPARTICLE PHYSICS (1 anno) - 6 CFU - semestrale	18	12	12 - 42
Astrofisico, geofisico e spaziale	FIS/05 Astronomia e astrofisica ASTROPHYSICS (1 anno) - 6 CFU - semestrale - obbl SOLAR PHYSICS (1 anno) - 6 CFU - semestrale - obbl GENERAL RELATIVITY (1 anno) - 6 CFU - semestrale - obbl EXTRAGALACTIC ASTRONOMY AND COSMOLOGY (2 anno) - 6 CFU - semestrale - obbl RADIOASTRONOMY (2 anno) - 6 CFU - semestrale COSMIC RAY PHYSICS (2 anno) - 6 CFU - semestrale	36	30	0 - 30

Minimo di crediti riservati dall'ateneo: - (minimo da D.M. 40)		
Totale attività caratterizzanti	54	40 - 144

Attività affini		settore	CFU Ins	CFU Off	CFU Rad
Attività formative affini o integrative	→ /	isica teorica modelli e metodi matematici ADVANCED STATISTICAL MECHANICS (1 anno) - 6 CFU -			
	\rightarrow	HIGH ENERGY ASTROPHYSICS (2 anno) - 6 CFU - semestrale -	18	12	12 - 24 min
	<u> </u>	isica per il sistema terra e per il mezzo circumterrestre MAGNETOHYDRODYNAMICS AND PLASMA PHYSICS (1 anno) - 6 CFU - semestrale			12
Totale attività A	ffini			12	12 - 24

	Altre attività	CFU	CFU Rad
A scelta dello studente	A scelta dello studente		12 - 12
Per la prova finale		40	30 - 40
	Ulteriori conoscenze linguistiche	-	-
Ulteriori attività formative	Abilità informatiche e telematiche	-	-
(art. 10, comma 5, lettera d)	Tirocini formativi e di orientamento	2	2 - 12
	Altre conoscenze utili per l'inserimento nel mondo del lavoro	-	-
Mini	Minimo di crediti riservati dall'ateneo alle Attività art. 10, comma 5 lett. d		
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali		-	0 - 10
Totale Altre Attività		54	44 - 74

CFU totali per il conseguimento del titolo	120	
CFU totali inseriti nel curriculum ASTROPHYSICS:	120	96 - 242

Curriculum: APPLIED PHYSICS

Attività caratterizzanti	settore	CFU Ins	CFU Off	CFU Rad
	FIS/01 Fisica sperimentale			
	ENVIRONMENTAL RADIOACTIVITY (1 anno) - 6 CFU - semestrale			
	ADVANCED NUCLEAR TECHNIQUES APPLIED TO MEDICINE (1 anno) - 6 CFU - semestrale			
	NUCLEAR AND PARTICLE PHYSICS LABORATORY (2 anno) - 6 CFU - semestrale - obbl			
Sperimentale applicativo		36	30	6 - 36
	FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)			
	IMAGE ANALYSIS AND FUNDAMENTALS OF DOSIMETRY (1 anno) - 6 CFU - semestrale - obbl			
	ARCHAEOMETRY (1 anno) - 6 CFU - semestrale - obbl			
	BIOPHYSICS (2 anno) - 6 CFU - semestrale - obbl			
Teorico e dei fondamenti della fisica	FIS/02 Fisica teorica modelli e metodi matematici ADVANCED QUANTUM MECHANICS (1 anno) - 6 CFU -	6	6	6 - 36
	semestrale - obbl			30
	FIS/03 Fisica della materia		18	
	SOLID-STATE PHYSICS (1 anno) - 6 CFU - semestrale - obbl			
Microfisico e della struttura	SPECTROSCOPY (2 anno) - 6 CFU - semestrale - obbl	18		12 -
della materia	FIS/04 Fisica nucleare e subnucleare			42
	NUCLEAR AND PARTICLE PHYSICS II (1 anno) - 6 CFU - semestrale - obbl			
Astrofisico, geofisico e spaziale		0	-	0 - 30
	Minimo di crediti riservati dall'ateneo: - (minimo da D.M. 40)			
Totale attività c	aratterizzanti		54	40 - 144

Attività affini	settore	CFU Ins	CFU Off	CFU Rad
Attività formative affini o integrative	FIS/01 Fisica sperimentale ELECTRONICS AND APPLICATIONS (1 anno) - 6 CFU - semestrale MACHINE LEARNING FOR PHYSICS (1 anno) - 6 CFU - semestrale FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina) MEDICAL PHYSICS (1 anno) - 6 CFU - semestrale ACCELERATOR PHYSICS AND APPLICATIONS (1 anno) - 6 CFU - semestrale	24	12	12 - 24 min 12
Totale attività A	ffini		12	12 - 24

	Altre attività	CFU	CFU Rad
A scelta dello studente	Autounivina	12	12 - 12
		40	30 - 40
Per la prova finale	I.m	40	30 - 40
Ulteriori attività formative	Ulteriori conoscenze linguistiche	-	-
	Abilità informatiche e telematiche	-	-
(art. 10, comma 5, lettera d)	Tirocini formativi e di orientamento	2	2 - 12
	Altre conoscenze utili per l'inserimento nel mondo del lavoro	-	-
Min	imo di crediti riservati dall'ateneo alle Attività art. 10, comma 5 lett. d		
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali		-	0 - 10
Totale Altre Attività		54	44 - 74

CFU totali per il conseguimento del titolo	120	
CFU totali inseriti nel curriculum APPLIED PHYSICS:	120	96 - 242

Curriculum: CONDENSED MATTER PHYSICS

Attività caratterizzanti	settore	CFU Ins	CFU Off	CFU Rad
Sperimentale applicativo	FIS/01 Fisica sperimentale MATERIALS AND NANOSTRUCTURES LABORATORY (1 anno) - 6 CFU - semestrale - obbl PHYSICS OF NANOSTRUCTURES (2 anno) - 6 CFU - semestrale - obbl	12	12	6 - 36
Teorico e dei fondamenti della fisica	FIS/02 Fisica teorica modelli e metodi matematici ADVANCED QUANTUM MECHANICS (1 anno) - 6 CFU - semestrale - obbl MESOSCOPIC AND TOPOLOGICAL MATERIALS (1 anno) - 6 CFU - semestrale QUANTUM PHASES OF MATTER (1 anno) - 6 CFU - semestrale	18	12	6 - 36
Microfisico e della struttura della materia	FIS/03 Fisica della materia SOLID-STATE PHYSICS (1 anno) - 6 CFU - semestrale - obbl PHOTONICS (1 anno) - 6 CFU - semestrale PHYSICS AND TECHNOLOGY OF TWO-DIMENSIONAL MATERIALS AND DEVICES (1 anno) - 6 CFU - semestrale SEMICONDUCTOR PHYSICS AND TECHNOLOGY (1 anno) - 6 CFU - semestrale SUPERCONDUCTIVITY AND SUPERFLUIDITY (1 anno) - 6 CFU - semestrale SPECTROSCOPY (2 anno) - 6 CFU - semestrale QUANTUM INFORMATION AND FOUNDATIONS (2 anno) - 6 CFU - semestrale COMPUTATIONAL QUANTUM OPTICS (2 anno) - 6 CFU - semestrale MANY-BODY THEORY (2 anno) - 6 CFU - semestrale	54	30	12 - 42
Astrofisico, geofisico e spaziale		0	-	0 - 30
	Minimo di crediti riservati dall'ateneo: - (minimo da D.M. 40)			
Totale attività caratteri	zzanti		54	40 - 144

Attività affini	settore	CFU Ins	CFU Off	CFU Rad
Attività formative affini o integrative	FIS/01 Fisica sperimentale PHYSICS AND TECHNOLOGY OF MATERIALS (1 anno) - 6 CFU - semestrale - obbl FIS/02 Fisica teorica modelli e metodi matematici ADVANCED STATISTICAL MECHANICS (1 anno) - 6 CFU - semestrale - obbl	12	12	12 - 24 min 12
Totale attività A	ffini		12	12 - 24

	Altre attività	CFU	CFU Rad
A scelta dello studente	A scelta dello studente		12 - 12
Per la prova finale		40	30 - 40
Ulteriori attività formative (art. 10, comma 5, lettera d)	Ulteriori conoscenze linguistiche	-	-
	Abilità informatiche e telematiche	-	-
	Tirocini formativi e di orientamento	2	2 - 12
	Altre conoscenze utili per l'inserimento nel mondo del lavoro	-	-
Min	imo di crediti riservati dall'ateneo alle Attività art. 10, comma 5 lett. d		
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali		-	0 - 10
Totale Altre Attività		54	44 - 74

CFU totali per il conseguimento del titolo		120		
CFU totali inseriti nel curriculum CONDENSED MATTER PHYSICS:	120	96 - 242		

Curriculum: NUCLEAR AND PARTICLE PHYSICS

Attività caratterizzanti	settore	CFU Ins	CFU Off	CFU Rad
Sperimentale applicativo	FIS/01 Fisica sperimentale NUCLEAR AND PARTICLE PHYSICS (1 anno) - 9 CFU - semestrale - obbl NUCLEAR AND PARTICLE PHYSICS LABORATORY (1 anno) - 6 CFU - semestrale - obbl EXPERIMENTAL METHODS FOR PARTICLE PHYSICS (1 anno) - 6 CFU - semestrale EXPERIMENTAL METHODS FOR NUCLEAR PHYSICS (1 anno) - 6 CFU - semestrale	27	18	6 - 36
Teorico e dei fondamenti della fisica	FIS/02 Fisica teorica modelli e metodi matematici ADVANCED QUANTUM MECHANICS (1 anno) - 6 CFU - semestrale - obbl	6	6	6 - 36
Microfisico e della struttura della materia	FIS/03 Fisica della materia SOLID-STATE PHYSICS (1 anno) - 6 CFU - semestrale - obbl FIS/04 Fisica nucleare e subnucleare NUCLEAR AND PARTICLE PHYSICS (1 anno) - 9 CFU - semestrale - obbl NUCLEAR ASTROPHYSICS (1 anno) - 6 CFU - semestrale ASTROPARTICLE PHYSICS (1 anno) - 6 CFU - semestrale ELEMENTARY PARTICLE PHYSICS (2 anno) - 9 CFU - semestrale HEAVY IONS PHYSICS AT INTERMEDIATE AND HIGH ENERGY (2 anno) - 9 CFU - semestrale NUCLEAR STRUCTURE (2 anno) - 6 CFU - semestrale DATA ANALYSIS TECHNIQUES FOR NUCLEAR AND PARTICLE PHYSICS (2 anno) - 6 CFU - semestrale	57	30	12 - 42
Astrofisico, geofisico e spaziale		0	-	0 - 30
	Minimo di crediti riservati dall'ateneo: - (minimo da D.M. 40)			
Totale attività car	ratterizzanti		54	40 - 144

Attività affini	settore	CFU Ins	CFU Off	CFU Rad
Attività formative affini o integrative	FIS/02 Fisica teorica modelli e metodi matematici THEORY OF STRONG INTERACTIONS (1 anno) - 6 CFU - semestrale - obbl QUANTUM FIELD THEORY - I (1 anno) - 6 CFU - semestrale NUCLEAR REACTION THEORY (1 anno) - 6 CFU - semestrale	18	12	12 - 24 min 12
Totale attività Affini			12	12 - 24

	Altre attività	CFU	CFU Rad
A scelta dello studente	A scelta dello studente		12 - 12
Per la prova finale		40	30 - 40
Ulteriori attività formative	Ulteriori conoscenze linguistiche	-	-
	Abilità informatiche e telematiche	-	-
(art. 10, comma 5, lettera d)	Tirocini formativi e di orientamento	2	2 - 12
	Altre conoscenze utili per l'inserimento nel mondo del lavoro	-	-
Mini	mo di crediti riservati dall'ateneo alle Attività art. 10, comma 5 lett. d		
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali		-	0 - 10
Totale Altre Attività		54	44 - 74

CFU totali per il conseguimento del titolo CFU totali inseriti nel curriculum NUCLEAR AND PARTICLE PHYSICS:		
CFU totali inseriti nel curriculum NUCLEAR AND PARTICLE PHYSICS:	120	96 - 242

Curriculum: THEORETICAL PHYSICS

Attività caratterizzanti	settore	CFU Ins	CFU Off	CFU Rad
Sperimentale applicativo	FIS/01 Fisica sperimentale	6	6	6 - 36

	MACHINE LEARNING FOR PHYSICS (1 anno) - 6 CFU - semestrale - obbl			
Teorico e dei fondamenti della fisica	FIS/02 Fisica teorica modelli e metodi matematici ADVANCED QUANTUM MECHANICS (1 anno) - 6 CFU - semestrale - obbl ADVANCED STATISTICAL MECHANICS (1 anno) - 6 CFU - semestrale - obbl QUANTUM FIELD THEORY - I (1 anno) - 6 CFU - semestrale - obbl QUANTUM FIELD THEORY -II (1 anno) - 6 CFU - semestrale - obbl STANDARD MODEL THEORY (2 anno) - 6 CFU - semestrale - obbl	30	30	6 - 36
Microfisico e della struttura della materia	FIS/03 Fisica della materia SOLID-STATE PHYSICS (1 anno) - 6 CFU - semestrale - obbl MANY-BODY THEORY (2 anno) - 6 CFU - semestrale FIS/04 Fisica nucleare e subnucleare NUCLEAR AND PARTICLE PHYSICS II (2 anno) - 6 CFU - semestrale	18	12	12 - 42
Astrofisico, geofisico e spaziale	FIS/05 Astronomia e astrofisica GENERAL RELATIVITY (1 anno) - 6 CFU - semestrale - obbl	6	6	0 - 30
	Minimo di crediti riservati dall'ateneo: - (minimo da D.M. 40)			
Totale attività carat	terizzanti		54	40 - 144

Attività affini	settore	CFU Ins	CFU Off	CFU Rad
Attività formative affini o integrative	FIS/02 Fisica teorica modelli e metodi matematici	30	12	12 - 24 min
-	PHYSICS OF COMPLEX SYSTEMS (1 anno) - 6 CFU - semestrale			12
	THEORY OF STRONG INTERACTIONS (1 anno) - 6 CFU - semestrale			

Totale attività A	ffini	12	12 - 24
	FIS/03 Fisica della materia SUPERCONDUCTIVITY AND SUPERFLUIDITY (1 anno) - 6 CFU - semestrale		
	QUANTUM PHASES OF MATTER (1 anno) - 6 CFU - semestrale		
	NUCLEAR REACTION THEORY (1 anno) - 6 CFU - semestrale		

	Altre attività	CFU	CFU Rad
A scelta dello studente	A scelta dello studente		12 - 12
Per la prova finale		40	30 - 40
Ulteriori attività formative	Ulteriori conoscenze linguistiche	-	-
	Abilità informatiche e telematiche	-	-
(art. 10, comma 5, lettera d)	Tirocini formativi e di orientamento	2	2 - 12
	Altre conoscenze utili per l'inserimento nel mondo del lavoro	-	-
Mini	mo di crediti riservati dall'ateneo alle Attività art. 10, comma 5 lett. d		
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali		-	0 - 10
Totale Altre Attività		54	44 - 74

CFU totali per il conseguimento del titolo	120	
CFU totali inseriti nel curriculum THEORETICAL PHYSICS:	120	96 - 242

Curriculum: NUCLEAR PHENOMENA AND THEIR APPLICATIONS

Attività caratterizzanti	settore	CFU Ins	CFU Off	CFU Rad
Sperimentale applicativo	FIS/01 Fisica sperimentale	36	24	6 - 36
	ENVIRONMENTAL RADIOACTIVITY (1 anno) - 6 CFU - semestrale			
	ADVANCED NUCLEAR TECHNIQUES APPLIED TO MEDICINE (1			

	anno) - 6 CFU - semestrale			
	FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)			
	BASIC EXPERIMENTAL AND APPLIED LABORATORY (1 anno) - 6 CFU - semestrale - obbl			
	ACCELERATOR PHYSICS AND APPLICATIONS (1 anno) - 6 CFU - semestrale - obbl			
	ARCHAEOMETRY (1 anno) - 6 CFU - semestrale			
	MEDICAL PHYSICS (1 anno) - 6 CFU - semestrale			
Teorico e dei fondamenti della fisica	FIS/02 Fisica teorica modelli e metodi matematici QUANTUM MECHANICS (1 anno) - 6 CFU - semestrale - obbl	12	12	6 - 36
della lisica	ATOMIC AND PLASMA PHYSICS (1 anno) - 6 CFU - semestrale - obbl			
	FIS/04 Fisica nucleare e subnucleare			
Microfisico e	BASIC NUCLEAR PHYSICS (1 anno) - 6 CFU - semestrale - obbl			40
della struttura della materia	NUCLEAR ASTROPHYSICS (1 anno) - 6 CFU - semestrale - obbl	18	18	12 - 42
	COMMON ADVANCED COURSE (2 anno) - 6 CFU - semestrale - obbl			
Astrofisico, geofisico e spaziale		0	-	0 - 30
	Minimo di crediti riservati dall'ateneo: - (minimo da D.M. 40)			
Totale attività o	aratterizzanti		54	40 - 144

Attività affini	settore	CFU Ins	CFU Off	CFU Rad
Attività formative affini o integrative	FIS/02 Fisica teorica modelli e metodi matematici COMPUTING AND NUMERICAL METHODS (1 anno) - 6 CFU - semestrale - obbl NUCLEAR REACTION THEORY (1 anno) - 6 CFU - semestrale - obbl	12	12	12 - 24 min 12
Totale attività Affini			12	12 -

Altre attività		CFU	CFU Rad
A scelta dello studente		12	12 - 12
Per la prova finale		30	30 - 40
Ulteriori attività formative (art. 10, comma 5, lettera d)	Ulteriori conoscenze linguistiche		-
	Abilità informatiche e telematiche	-	-
	Tirocini formativi e di orientamento	12	2 - 12
	Altre conoscenze utili per l'inserimento nel mondo del lavoro	-	-
Minimo di crediti riservati dall'ateneo alle Attività art. 10, comma 5 lett. d			
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali		-	0 - 10
Totale Altre Attività		54	44 - 74

CFU totali per il conseguimento del titolo	120	
CFU totali inseriti nel curriculum NUCLEAR PHENOMENA AND THEIR APPLICATIONS:	120 96 - 242	

Þ

Raggruppamento settori

per modificare il raggruppamento dei settori

Attività caratterizzanti R^aD

		CFU		minimo da D.M.	
ambito disciplinare	settore	min	max	per l'ambito	
Sperimentale applicativo	FIS/01 Fisica sperimentale FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)	6	36	-	
Teorico e dei fondamenti della fisica	FIS/02 Fisica teorica modelli e metodi matematici	6	36	-	
Microfisico e della struttura della materia	FIS/03 Fisica della materia FIS/04 Fisica nucleare e subnucleare	12	42	-	
Astrofisico, geofisico e spaziale	FIS/05 Astronomia e astrofisica FIS/06 Fisica per il sistema terra e per il mezzo circumterrestre	0	30	-	
Minimo di crediti riservati dall'ateneo minimo da D.M. 40:		-			
Totale Attività Caratterizzanti			40 - 14	4	

ambito disciplinare	CFU		minimo da D.M. per l'ambito
ambito discipilitare	min	max	illillillo da D.M. per i allibito
Attività formative affini o integrative	12	24	12
Totale Attività Affini			12 - 24

Altre attività

ambito disciplinare		CFU min	CFU max
A scelta dello studente		12	12
Per la prova finale		30	40
Ulteriori attività formative (art. 10, comma 5, lettera d)	Ulteriori conoscenze linguistiche	-	-
	Abilità informatiche e telematiche	-	-
	Tirocini formativi e di orientamento	2	12
	Altre conoscenze utili per l'inserimento nel mondo del lavoro	-	-
Minimo di crediti riservati dall'ateneo alle Attività art. 10, comma 5 lett. d			
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali		0	10

Totale Altre Attività 44 - 74

Riepilogo CFU R^aD

CFU totali per il conseguimento del titolo	120
Range CFU totali del corso	96 - 242

Sono state apportate le modifiche suggerite dal CUN.

I crediti riservati alla prova finale potranno essere conseguiti per attività di ricerca relativa alla tesi da svolgersi sia in Italia che all'estero nell'ambito di programmi di mobilità internazionale.

La laurea magistrale prevede diversi curricula al fine di consentire una personalizzazione del proprio piano di studi e il raggiungimento dell'obiettivo di una effettiva formazione specialistica, con un'elevata preparazione scientifica e operativa legata in maniera puntuale alle molteplici attività di ricerca di frontiera svolte in sede, che spaziano dall'ambito teorico a quello microfisico, astrofisico e sperimentale applicativo. In questo modo si potrà dare una formazione più adeguata allo studente che voglia poi continuare un percorso formativo di livello superiore o che voglia spendere sul mercato del lavoro la preparazione acquisita.