Luciano PANDOLA

Adjunct Professor
  • Staff Senior Researcher at the Istituto Nazionale di Fisica Nucleare at the Laboratori Nazionali del Sud (LNS), Catania.  Working at the Laboratori Nazionali del Gran Sasso (LNGS) between 2005 and 2013
  • h-index: 37 (database ISI-Web of Knowledge), updated 14-Feb-2023
  • Former “Analysis Coordinator” (2011-2017) of the GERDA experiment
  • Coordinator of the "ReD" Working Group within the DarkSide Collaboration
  • Coordinator of “Computing” Working Group of the NUMEN Collaboration
  • Deputy coordinator of the "Electromagnetic Physics" Working Group of the Geant4 Collaboration
  • Teaching Qualification ("Abilitazione Scientifica Nazionale") as Associate Professor (Professore di Seconda Fascia) earned in 2012 and renewed in 2019.

Research Activity

  1. Astroparticle physics (Dark Matter): DarkSide experiment at LNGS, ReD project at LNS and INFN-Catania
  2. Nuclear physics: NUMEN experiment at LNS
  3. Monte Carlo simulation of radiation-matter interaction: Geant4 project (and applications to several physics domains)
  4. Astroparticle physics (Neutrinoless Double Beta Decay): GERDA experiment at LNGS

ORCID: 0000-0003-2867-0121

(Latest update: February 1st, 2023)

INFN Research Staff at the Laboratori Nazionali del Sud, Catania

Education and Qualifications

  • Master degree in Physics (University of L’Aquila), 2001, with full marks (110/110) cum laude.
  • PhD earned in May 2005 from University of L’Aquila. Thesis: “Measurement of the solar neutrino interaction rate on 71Ga with the radiochemical experiment GNO”
  • Teaching Qualification ("Abilitazione Scientifica Nazionale") as Associate Professor (Professore di Seconda Fascia) earned in 2012 and renewed in 2019.

Employment

  • INFN, Staff Senior Researcher at LNS (as of 1 Jan 2020)
  • INFN, Staff Researcher at LNS (2013-2019)
  • INFN, Staff Researcher at LNGS (2005-2013)

Biliometry (ISI - Web of Knowledge)

  • H-index: 37
  • Total papers in the database: 187 (133 Open Access)
  • Total citations: 10.761 (10.125 without self-citations)
  • Notable papers: one on Nature, one su Science, seven on Physical Review Letters

Managerial roles (present and past)

  • Referee of the CSN2 of the INFN for the experiments OPERA (2011-2015), XENON1T (2011-2017), MOSCAB (2013-2020), CUPID (from 2015) and CUORE (from 2019)
  • Local Coordinator of the Laboratori Nazionali del Gran Sasso within the "Commissione Scientifica Nazionale 2" (CSN2) of the INFN, 2011-2013
  • Scientific Secretary of the International Conference:  "XI International Conference on Topics in Astroparticle and Underground Physics (TAUP2009)", Rome, 1-5 July 2009. Editor of the Proceedings: Journal of Physics, Conf. Series 203 (2010)
  • Scientific Secretary of the International Workshop "IV Workshop in Low Radioactivity Techniques (LRT2013)", Assergi, 10-12 April 2013. Editor of the Proceedings: American Institute of Physics, Conf. Proc. 1549 (2013)
  • Peer reviewer for the journals: Physics Letters B, Nuclear Istruments and Methods A (NIM A), Nuclear Istruments and Methods B (NIM B), European Physics Journal A (EPJ A), European Physics Journal C (EPJ C), IEEE Transactions on Nuclear Science (IEEE-TNS), Journal of Instrumentation (JINST), Solar Physics, Astroparticle Physics, Journal of Cosmology and Astroparticle Physics (JCAP), Radiation Physics and Chemistry (RPC), Applied Radiation and Isotopes (ARI), Radiation Physics and Chemistry (RPC), Chinese Physics C (CPC), Canadian Journal of Physics
  • PI of the INFN Unit within the Italian Research project PRIN “Prelude” 20154F48P9_004 (2017-2020)

Teaching Activity

  • “Monte Carlo Techniques” lectures for the PhD Course in Astroparticle Physics of the Gran Sasso Science Institute (GSSI), for the ten academic years 2013-2014 to 2022-2023 (10 hours)
  • “Tecniche Monte Carlo” lectures for the PhD Course in Physics of the University of Catania, for the four A.Y. from 2019-2020 to 2022-2023 (2 CFU)
  • "Data Analysis Techniques for Nuclear and Particle Physics" lectures for the Master Course in Physics (LM-17) of the University of Catania, A.Y. 2020-2021

Research Activity

  • Member of the GERmanium Detector Array (GERDA) Collaboration, from 2004 to date:
    • Search for neutrinoless double beta decay
    • Analysis Coordinator of the GERDA Collaboration (2011-2017)
    • Coordinator of the Task Group TG10 (“Simulations and background studies”) of the GERDA Collaboration, from 2004 to date
  • Member of the DarkSide Collaboration, from 2016 to date
    • WIMP Direct Dark Matter Search
    • L1 coordinator for the task “ReD” of the DarkSide Collaboration, from 2018 to date
  • Member of the NUMEN Collaboration, from 2014 to date
    • Measurement of nuclear matrix elements of interest for neutrinoless double beta decay
    • Coordinator of the WG10 (“Computing”) of the NUMEN Collaboration. Member of the NUMEN Technical Board
  • Member of the Geant4 Collaboration, from 2002 to date
    • Monte Carlo simulation of the interaction between radiation and matter
    • Deputy coordinator (from 2012) of the Task Group “Low-Energy Electromagnetic Physics” of the Geant4 Collaboration. Member of the Geant4 Steering Board.
    • Coordinator (2014-2018) and deputy coordinator (2010-2014) of the Task Group “Advanced Examples” within the Geant4 Collaboration
  • Member of the Gallium Neutrino Observatory (GNO) Collaboration (2000-2005)
    • Measurement of the solar neutrino interaction rate using a radiochemical technique
  • Member of the WIMP Argon Programme (WArP) Collaboration (2005-2010)
    • WIMP Direct Dark Matter Search
  • Member of the Low-Energy Neutrino Spectroscopy (LENS) R&D Collaboration (2002-2004)
    • R&D project for a possible real-time spectroscopic measurement of low-energy solar neutrinos

The scientific activity at Laboratori Nazionali del Gran Sasso and at Laboratori Nazionali del Sud of INFN spanned over different physics topics, mostly within the "Astroparticle Physics" activities of the INFN Commissione Scientifica Nazionale 2. Specifically: measurement of solar neutrinos; serch for neutrinoless ββ decay and ancillary measurements (e.g. nuclear matrix elements), dark matter searches, "low-background techniques" for rare event searches. The main contributions refer to the development of dedicated software, both for Monte Carlo simulation and for data analysis/handling. The expertise which was earned during more than 15 years of activity within INFN includes:

  1. development of software frameworks for the analysis of data collected in a variety of experiments and with different kinds of detectors: gas proportional counters, semiconductor detectors (HPGe and Si), scintillation detectors, noble liquid (single-phase and double-phase) detectors, readout  with photomultipliers and SiPMs;
  2. offline data analysis of experimental data: pulse shape analysis of digitized traces; event selection and reconstruction; final statistical analysis, also with specific techniques appropriate for low-statistics cases;
  3. Monte Carlo simulation for the assessment of background sources, especially in the framework of rare event experiments (background from α/β/γ radioactivity, neutron background, background induced by cosmic-ray muons); Monte Carlo simulation for the design optimization and for the minimization of background in experiment of interest of INFN; Monte Carlo simulations specific to support data analysis;
  4. development of Monte Carlo applications with Geant4, and validation for different physics domains, including rare-event searches and medical physics.
[1] A. Spatafora et al. Multichannel experimental and theoretical approach to the C12(O18,F18)B12 single-charge-exchange reaction at 275 MeV: Initial-state interaction and single-particle properties of nuclear wave functions. Phys. Rev. C, 107(2):024605, 2023. [ DOI ]
[2] P. Agnes et al. Search for low mass dark matter in DarkSide-50: the bayesian network approach. 2 2023. [ arXiv ]
[3] E. Aaron et al. Study on cosmogenic activation above ground for the DarkSide-20k project. 1 2023. [ arXiv ]
[4] E. Aaron et al. Measurement of isotopic separation of argon with the prototype of the cryogenic distillation plant Aria for dark matter searches. 1 2023. [ arXiv ]
[5] M. Agostini et al. Liquid argon light collection and veto modeling in GERDA Phase II. 12 2022. [ arXiv ]
[6] M. Agostini et al. Search for exotic physics in double-β decays with GERDA Phase II. JCAP, 12:012, 2022. [ DOI | arXiv ]
[7] P. Agnes et al. Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel. 9 2022. [ arXiv ]
[8] Carl Eric Dahl et al. Snowmass Instrumentation Frontier IF08 Topical Group Report: Noble Element Detectors. 8 2022. [ arXiv ]
[9] P. Agnes et al. Search for dark matter particle interactions with electron final states with DarkSide-50. 7 2022. [ arXiv ]
[10] P. Agnes et al. Search for dark matter-nucleon interactions via Migdal effect with DarkSide-50. 7 2022. [ arXiv ]
[11] P. Agnes et al. Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50. 7 2022. [ arXiv ]
[12] I. Ciraldo et al. Analysis of the one-neutron transfer reaction in 18O+76Se collisions at 275 MeV. Phys. Rev. C, 105(4):044607, 2022. [ DOI | arXiv ]
[13] M. Agostini et al. Pulse shape analysis in Gerda Phase II. Eur. Phys. J. C, 82(4):284, 2022. [ DOI | arXiv ]
[14] S. Burrello et al. Multichannel experimental and theoretical constraints for the 116Cd(20Ne,20F)116In charge exchange reaction at 306 MeV. Phys. Rev. C, 105(2):024616, 2022. [ DOI | arXiv ]
[15] M. Cavallaro et al. A focus on selected perspectives of the NUMEN project. J. Phys. Conf. Ser., 2340(1):012036, 2022. [ DOI ]
[16] S. Sanfilippo et al. The Recoil Directionality (ReD) Experiment. J. Phys. Conf. Ser., 2374(1):012162, 2022. [ DOI ]
[17] S. Calabrese et al. 18O-induced single-nucleon transfer reactions on 40Ca at 15.3A MeV within a multichannel analysis. Phys. Rev. C, 104(6):064609, 2021. [ DOI ]
[18] Francesco Cappuzzello et al. The NUMEN Technical Design Report. Int. J. Mod. Phys. A, 36(30):2130018, 2021. [ DOI ]
[19] L. La Fauci et al. 18O+76Se elastic and inelastic scattering at 275 MeV. Phys. Rev. C, 104(5):054610, 2021. [ DOI ]
[20] O. Sgouros et al. One-proton transfer reaction for the 18O+48Ti system at 275 MeV. Phys. Rev. C, 104(3):034617, 2021. [ DOI | arXiv ]
[21] P. Agnes et al. A study of events with photoelectric emission in the DarkSide-50 liquid argon Time Projection Chamber. Astropart. Phys., 140:102704, 2022. [ DOI | arXiv ]
[22] P. Agnes et al. Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50. Phys. Rev. D, 104(8):082005, 2021. [ DOI | arXiv ]
[23] P. Agnes et al. Performance of the ReD TPC, a novel double-phase LAr detector with silicon photomultiplier readout. Eur. Phys. J. C, 81(11):1014, 2021. [ DOI | arXiv ]
[24] G. Angloher et al. Simulation-based design study for the passive shielding of the COSINUS dark matter experiment. Eur. Phys. J. C, 82(3):248, 2022. [ DOI | arXiv ]
[25] Manuela Cavallaro et al. A Constrained Analysis of the 40Ca(18O,18F)40K Direct Charge Exchange Reaction Mechanism at 275 MeV. Front. Astron. Space Sci., 8:659815, 2021. [ DOI ]
[26] M. Agostini et al. Characterization of inverted coaxial 76Ge detectors in GERDA for future double-β decay experiments. Eur. Phys. J. C, 81(6):505, 2021. [ DOI | arXiv ]
[27] M. Agostini et al. Calibration of the Gerda experiment. Eur. Phys. J. C, 81(8):682, 2021. [ DOI | arXiv ]
[28] Clementina Agodi et al. The NUMEN Project: Toward New Experiments with High-Intensity Beams. Universe, 7(3):72, 2021. [ DOI ]
[29] Francesco Cappuzzello et al. The NUMEN Project: An Update of the Facility Toward the Future Experimental Campaigns. Front. Astron. Space Sci., 8:52, 2021. [ DOI ]
[30] Diana Carbone et al. Initial State Interaction for the 20Ne + 130Te and 18O + 116Sn Systems at 15.3 AMeV from Elastic and Inelastic Scattering Measurements. Universe, 7(3):58, 2021. [ DOI ]
[31] P. Agnes et al. Separating 39 Ar from 40Ar by cryogenic distillation with Aria for dark-matter searches. Eur. Phys. J. C, 81(4):359, 2021. [ DOI | arXiv ]
[32] O. Sgouros, F. Cappuzzello, M. Cavallaro, and L. Pandola. Estimation of neutron and γ-rays flux at the MAGNEX facility via FLUKA simulations. EPJ Web Conf., 252:06003, 2021. [ DOI ]
[33] Francesco Cappuzzello et al. Recent experimental activity on heavy-ion induced reactions within the NUMEN project. EPJ Web Conf., 252:04001, 2021. [ DOI ]
[34] S. Sanfilippo et al. The Recoil Directionality (ReD) experiment. Nuovo Cim. C, 45(1):22, 2021. [ DOI ]
[35] F. Cappuzzello et al. Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS. J. Phys. Conf. Ser., 1643(1):012074, 2020. [ DOI ]
[36] G. Petringa et al. Monte Carlo implementation of new algorithms for the evaluation of averaged-dose and -track linear energy transfers in 62 MeV clinical proton beams. Phys. Med. Biol., 65(23):235043, 2020. [ DOI ]
[37] P. Agnes et al. Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos. JCAP, 03:043, 2021. [ DOI | arXiv ]
[38] D. Carbone et al. Analysis of two-nucleon transfer reactions in the 20Ne+116Cd system at 306 MeV. Phys. Rev. C, 102(4):044606, 2020. [ DOI | arXiv ]
[39] M. Cavallaro et al. Recent results on heavy-ion direct reactions of interest for 0νββ decay at INFN - LNS. J. Phys. Conf. Ser., 1610(1):012004, 2020. [ DOI ]
[40] M. Agostini et al. Final Results of GERDA on the Search for Neutrinoless Double-β Decay. Phys. Rev. Lett., 125(25):252502, 2020. [ DOI | arXiv ]
[41] Paolo Finocchiaro et al. The NUMEN Heavy Ion Multidetector for a Complementary Approach to the Neutrinoless Double Beta Decay. Universe, 6(9):129, 2020. [ DOI ]
[42] Domenico Lo Presti et al. Neutron radiation effects on an electronic system on module. Rev. Sci. Instrum., 91(8):083301, 2020. [ DOI ]
[43] M. Agostini et al. First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/c2 with GERDA. Phys. Rev. Lett., 125(1):011801, 2020. [Erratum: Phys.Rev.Lett. 129, 089901 (2022)]. [ DOI | arXiv ]
[44] J. R. B. Oliveira et al. First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case. Eur. Phys. J. A, 56(5):153, 2020. [ DOI ]
[45] A. Ciardiello et al. Preliminary results in using Deep Learning to emulate BLOB, a nuclear interaction model. Phys. Medica, 73:65--72, 2020. [ DOI | arXiv ]
[46] C. E. Aalseth et al. SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range. Eur. Phys. J. C, 81(2):153, 2021. [ DOI | arXiv ]
[47] P. Agnes et al. Effective field theory interactions for liquid argon target in DarkSide-50 experiment. Phys. Rev. D, 101(6):062002, 2020. [ DOI | arXiv ]
[48] C. E. Aalseth et al. Design and Construction of a New Detector to Measure Ultra-Low Radioactive-Isotope Contamination of Argon. JINST, 15(02):P02024, 2020. [ DOI | arXiv ]
[49] C. Agodi et al. New Results from the NUMEN Project. JPS Conf. Proc., 32:010045, 2020. [ DOI ]
[50] Vladimir Ivanchenko et al. Geant4 electromagnetic physics progress. EPJ Web Conf., 245:02009, 2020. [ DOI ]
[51] S. Calabrese et al. Analysis of the background on cross section measurements with the MAGNEX spectrometer: the (20Ne,20O) Double Charge Exchange case. Nucl. Instrum. Meth. A, 980:164500, 2020. [ DOI | arXiv ]
[52] F. Cappuzzello et al. The NUMEN project @ LNS: Status and perspectives. AIP Conf. Proc., 2165(1):020003, 2019. [ DOI ]
[53] A. Spatafora et al. 20Ne+76Ge elastic and inelastic scattering at 306 MeV. Phys. Rev. C, 100(3):034620, 2019. [ DOI | arXiv ]
[54] C. Agodi et al. Recent results on Heavy-Ion induced reactions of interest for 0νββ decay. J. Phys. Conf. Ser., 1308(1):012002, 2019. [ DOI ]
[55] M. Agostini et al. Probing Majorana neutrinos with double-β decay. Science, 365:1445, 2019. [ DOI | arXiv ]
[56] M. Agostini et al. Modeling of GERDA Phase II data. JHEP, 03:139, 2020. [ DOI | arXiv ]
[57] C. Agodi et al. New experimental campaign of NUMEN project. AIP Conf. Proc., 2150(1):030001, 2019. [ DOI ]
[58] F. Cappuzzello et al. The NUMEN project @ LNS: Status and perspectives. AIP Conf. Proc., 2150(1):030003, 2019. [ DOI ]
[59] P. Agnes et al. Measurement of the ion fraction and mobility of 218Po produced in 222Rn decays in liquid argon. JINST, 14(11):P11018, 2019. [ DOI | arXiv ]
[60] B. Bottino et al. DarkSide: Latest results and future perspectives. Nuovo Cim. C, 42(4):180, 2019. [ DOI ]
[61] M. Cavallaro et al. Charge-state distributions of 20Ne ions emerging from thin foils. Results Phys., 13:102191, 2019. [ DOI | arXiv ]
[62] F. Cappuzzello et al. The NUMEN Project @ LNS: Status and perspectives. Nuovo Cim. C, 42(2-3-3):57, 2019. [ DOI ]
[63] S. Sanfilippo et al. DarkSide status and prospects. Nuovo Cim. C, 42(2-3):79, 2019. [ DOI ]
[64] M. Agostini et al. Characterization of 3076Ge enriched Broad Energy Ge detectors for GERDA Phase II. Eur. Phys. J. C, 79(11):978, 2019. [ DOI | arXiv ]
[65] D. Torresi et al. Challenges in double charge exchange measurements for neutrino physics. CERN Proc., 1:233--238, 2019.
[66] S. Sanfilippo et al. Recoil Directionality Experiment. EPJ Web Conf., 209:01031, 2019. [ DOI ]
[67] Manuela Cavallaro et al. Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS. EPJ Web Conf., 223:01009, 2019. [ DOI ]
[68] D. Carbone et al. Experimental challenges in the measurement of double charge exchange reactions within the NUMEN project. J. Phys. Conf. Ser., 1078(1):012008, 2018. [ DOI ]
[69] S. Calabrese et al. Data reduction for experimental measurements within the NUMEN project. J. Phys. Conf. Ser., 1056(1):012010, 2018. [ DOI ]
[70] D. Carbone et al. Experimental issues for the measurement of the double charge exchange reactions within the NUMEN project. J. Phys. Conf. Ser., 1056(1):012011, 2018. [ DOI ]
[71] N. Deshmukh et al. Heavyion particle identification for the transfer reaction channels for the system 18O + 116Sn under the NUMEN Project. J. Phys. Conf. Ser., 1056(1):012015, 2018. [ DOI ]
[72] G. Gallo, D. L. Bonanno, D. G. Bongiovanni, F. Cappuzzello, M. Cortesi, F. Longhitano, D. Lo Presti, L. Pandola, and S. Reito. Focal plane detector optical readout. J. Phys. Conf. Ser., 1056(1):012023, 2018. [ DOI ]
[73] D. Lo Presti et al. Challenges for high rate signal processing for the NUMEN experiment. J. Phys. Conf. Ser., 1056(1):012034, 2018. [ DOI ]
[74] G. Santagati et al. Post-stripper study for the (20Ne, 20O) double charge exchange reaction at zero degrees with the MAGNEX spectrometer. J. Phys. Conf. Ser., 1056(1):012052, 2018. [ DOI ]
[75] D. Carbone et al. Experimental challenges for the measurement of the 116Cd(20Ne,20O)116Sn double charge exchange reaction at 15 AMeV. J. Phys. Conf. Ser., 1023(1):012006, 2018. [ DOI ]
[76] F. Cappuzzello et al. The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay. Eur. Phys. J. A, 54(5):72, 2018. [ DOI | arXiv ]
[77] M. Agostini et al. New Data Release of GERDA Phase II: Search for 0νββ decay of 76Ge. KnE Energ. Phys., 3:202--209, 2018. [ DOI ]
[78] M. Agostini et al. GERDA results and the future perspectives for the neutrinoless double beta decay search using 76Ge. Int. J. Mod. Phys. A, 33(09):1843004, 2018. [ DOI ]
[79] M. Agostini et al. Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II. Phys. Rev. Lett., 120(13):132503, 2018. [ DOI | arXiv ]
[80] M. Cavallaro et al. Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay. J. Phys. Conf. Ser., 966(1):012021, 2018. [ DOI | arXiv ]
[81] P. Agnes et al. DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon. Phys. Rev. D, 98(10):102006, 2018. [ DOI | arXiv ]
[82] P. Agnes et al. Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Phys. Rev. Lett., 121(8):081307, 2018. [ DOI | arXiv ]
[83] P. Agnes et al. Constraints on Sub-GeV Dark-MatterElectron Scattering from the DarkSide-50 Experiment. Phys. Rev. Lett., 121(11):111303, 2018. [ DOI | arXiv ]
[84] Christoph Wiesinger, Luciano Pandola, and Stefan Schönert. Virtual depth by active background suppression: Revisiting the cosmic muon induced background of GERDA Phase II. Eur. Phys. J. C, 78(7):597, 2018. [ DOI | arXiv ]
[85] P. Agnes et al. Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC. Nucl. Instrum. Meth. A, 904:23--34, 2018. [ DOI | arXiv ]
[86] S. Calabrese et al. First Measurement of the 116Cd(20Ne,20O)116Sn Reaction at 15,A,MeV. Acta Phys. Polon. B, 49:275, 2018. [ DOI ]
[87] D. Carbone et al. The nuclear matrix elements of 0νββ decay and the NUMEN project at INFN-LNS. EPJ Web Conf., 194:02001, 2018. [ DOI ]
[88] A. Bagulya et al. Recent progress of GEANT4 electromagnetic physics for LHC and other applications. J. Phys. Conf. Ser., 898(4):042032, 2017. [ DOI ]
[89] M. Agostini et al. Upgrade for Phase II of the Gerda experiment. Eur. Phys. J. C, 78(5):388, 2018. [ DOI | arXiv ]
[90] M. Agostini et al. Searching for neutrinoless double beta decay with GERDA. J. Phys. Conf. Ser., 1342(1):012005, 2020. [ DOI | arXiv ]
[91] F. Cappuzzello et al. The NUMEN project @ LNS: Status and perspectives. AIP Conf. Proc., 1894(1):020004, 2017. [ DOI ]
[92] M. Agostini et al. Search for Neutrinoless Double Beta Decay with GERDA Phase II. AIP Conf. Proc., 1894(1):020012, 2017. [ DOI ]
[93] M. Agostini et al. First results from GERDA Phase II. J. Phys. Conf. Ser., 888(1):012030, 2017. [ DOI ]
[94] M. Agostini et al. Active background suppression with the liquid argon scintillation veto of GERDA Phase II. J. Phys. Conf. Ser., 888(1):012238, 2017. [ DOI ]
[95] M. Agostini et al. Study of the GERDA Phase II background spectrum. J. Phys. Conf. Ser., 888(1):012106, 2017. [ DOI ]
[96] N. Abgrall et al. The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND). AIP Conf. Proc., 1894(1):020027, 2017. [ DOI | arXiv ]
[97] C. E. Aalseth et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus, 133:131, 2018. [ DOI | arXiv ]
[98] David Bolst et al. Validation of Geant4 fragmentation for Heavy Ion Therapy. Nucl. Instrum. Meth. A, 869:68--75, 2017. [ DOI ]
[99] Enrico Bagli, Makoto Asai, Andrea Dotti, Luciano Pandola, and Marc Verderi. Allowing for crystalline structure effects in Geant4. Nucl. Instrum. Meth. B, 402:304--307, 2017. [ DOI ]
[100] Manuela Cavallaro et al. NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay. PoS, BORMIO2017:015, 2017. [ DOI | arXiv ]
[101] C. E. Aalseth et al. Cryogenic Characterization of FBK RGB-HD SiPMs. JINST, 12(09):P09030, 2017. [ DOI | arXiv ]
[102] Clementina Agodi et al. NUMEN project @ LNS: Status and perspectives. PoS, NOW2016:075, 2017. [ DOI ]
[103] M. Cadeddu et al. Directional dark matter detection sensitivity of a two-phase liquid argon detector. JCAP, 01:014, 2019. [ DOI | arXiv ]
[104] M. Agostini et al. First results of GERDA Phase II and consistency with background models. J. Phys. Conf. Ser., 798(1):012106, 2017. [ DOI ]
[105] M. Agostini et al. Background-free search for neutrinoless double-β decay of 76Ge with GERDA. Nature, 544:47, 2017. [ DOI | arXiv ]
[106] Valerio D'Andrea et al. First Results of Gerda Phase II. PoS, NOW2016:098, 2017. [ DOI ]
[107] Matteo Cadeddu et al. Recoil Directionality Studies in Two-Phase Liquid Argon TPC Detectors. EPJ Web Conf., 164:07036, 2017. [ DOI ]
[108] M. Agostini et al. Limits on uranium and thorium bulk content in GERDA Phase I detectors. Astropart. Phys., 91:15--21, 2017. [ DOI | arXiv ]
[109] M. Agostini et al. Search for Neutrinoless Double Beta Decay with the GERDA experiment: Phase II. PoS, ICHEP2016:493, 2016. [ DOI ]
[110] J. Allison et al. Recent developments in Geant4. Nucl. Instrum. Meth. A, 835:186--225, 2016. [ DOI ]
[111] F. Cappuzzello et al. The nuclear matrix elements of 0vββ decay and the NUMEN project at INFN-LNS. J. Phys. Conf. Ser., 730(1):012006, 2016. [ DOI ]
[112] C. Agodi et al. NUMEN Project @ LNS : Heavy Ions Double Charge Exchange as a tool towards the 0νββ Nuclear Matrix Element. J. Phys. Conf. Ser., 724(1):012001, 2016. [ DOI ]
[113] M. Cavallaro et al. Neutron decay of the Giant Pairing Vibration in (15)C. J. Phys. Conf. Ser., 724(1):012006, 2016. [ DOI ]
[114] M. Cavallaro et al. Neutron decay of C15 resonances by measurements of neutron time-of-flight. Phys. Rev. C, 93(6):064323, 2016. [ DOI ]
[115] M. Agostini et al. Search of Neutrinoless Double Beta Decay with the GERDA Experiment. Nucl. Part. Phys. Proc., 273-275:1876--1882, 2016. [ DOI ]
[116] F. Cappuzzello et al. The nuclear matrix elements of 0νββ decay and the NUMEN project at INFN-LNS. EPJ Web Conf., 117:10003, 2016. [ DOI ]
[117] A. Muoio et al. Silicon carbide detectors study for NUMEN project. EPJ Web Conf., 117:10006, 2016. [ DOI ]
[118] M. Agostini et al. Limit on the radiative neutrinoless double electron capture of36 Ar from GERDA Phase I. Eur. Phys. J. C, 76(12):652, 2016. [ DOI | arXiv ]
[119] C. M. Cattadori and L. Pandola. Experimental and analysis methods in radiochemical experiments. Eur. Phys. J. A, 52(4):83, 2016. [ DOI ]
[120] M. Agostini et al. Flux Modulations seen by the Muon Veto of the GERDA Experiment. Astropart. Phys., 84:29--35, 2016. [ DOI | arXiv ]
[121] J. Apostolakis et al. Progress in Geant4 Electromagnetic Physics Modelling and Validation. J. Phys. Conf. Ser., 664(7):072021, 2015. [ DOI ]
[122] C. Agodi et al. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination. AIP Conf. Proc., 1686(1):020001, 2015. [ DOI ]
[123] M. Agostini et al. Limit on Neutrinoless Double Beta Decay of 76Ge by GERDA. Phys. Procedia, 61:828--837, 2015. [ DOI ]
[124] M. Agostini et al. 2νββ decay of 76Ge into excited states with GERDA Phase I. J. Phys. G, 42(11):115201, 2015. [ DOI | arXiv ]
[125] M. Agostini et al. Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I. Eur. Phys. J. C, 75(6):255, 2015. [ DOI | arXiv ]
[126] M. Agostini et al. Results on ββ decay with emission of two neutrinos or Majorons in76 Ge from GERDA Phase I. Eur. Phys. J. C, 75(9):416, 2015. [ DOI | arXiv ]
[127] Luciano Pandola, Claudio Andenna, and Barbara Caccia. Validation of the Geant4 simulation of bremsstrahlung from thick targets below 3 MeV. Nucl. Instrum. Meth. B, 350:41--48, 2015. [ DOI | arXiv ]
[128] M. Agostini et al. Production, characterization and operation of 76Ge enriched BEGe detectors in GERDA. Eur. Phys. J. C, 75(2):39, 2015. [ DOI | arXiv ]
[129] Luciano Pandola. Status of double beta decay experiments using isotopes other than 136Xe. Phys. Dark Univ., 4:17--22, 2014. [ DOI | arXiv ]
[130] V. N. Ivanchenko et al. Geant4 Electromagnetic Physics for LHC Upgrade. J. Phys. Conf. Ser., 513:022015, 2014. [ DOI ]
[131] S. Tropea et al. Measurement of Fragment Production Cross Sections in the 12C+12C and 12C+197Au Reactions at 62 A MeV for Hadrontherapy and Space Radiation Protection. Acta Phys. Polon. B, 45(2):565, 2014. [ DOI ]
[132] V. N. Ivanchenko et al. Geant4 electromagnetic physics: improving simulation performance and accuracy. In Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, 10 2013. [ DOI ]
[133] M. Agostini et al. Results on Neutrinoless Double-β Decay of 76Ge from Phase I of the GERDA Experiment. Phys. Rev. Lett., 111(12):122503, 2013. [ DOI | arXiv ]
[134] M. Agostini et al. Pulse shape discrimination for GERDA Phase I data. Eur. Phys. J. C, 73(10):2583, 2013. [ DOI | arXiv ]
[135] M. Agostini et al. The background in the 0 νββ experiment GERDA. Eur. Phys. J. C, 74(4):2764, 2014. [ DOI | arXiv ]
[136] E. Andreotti et al. HEROICA: an Underground Facility for the Fast Screening of Germanium Detectors. JINST, 8:P06012, 2013. [ DOI | arXiv ]
[137] Riccardo Brugnera et al. Status of the GERDA experiment. PoS, Neutel2013:039, 2013. [ DOI ]
[138] Lino Miramonti and Luciano Pandola, editors. Proceedings, 4th Topical Workshop on Low Radioactivity Techniques (LRT 2013): L'Aquila, Italy, April 10-12, 2013, volume 1549, 2013.
[139] M. Agostini et al. Measurement of the half-life of the two-neutrino double beta decay of Ge-76 with the Gerda experiment. J. Phys. G, 40:035110, 2013. [ DOI | arXiv ]
[140] K. H. Ackermann et al. The GERDA experiment for the search of 0νββ decay in 76Ge. Eur. Phys. J. C, 73(3):2330, 2013. [ DOI | arXiv ]
[141] R. Acciarri, N. Canci, F. Cavanna, P. Kryczynski, L. Pandola, E. Segreto, and A. M. Szelc. Neutron to Gamma Pulse Shape Discrimination in Liquid Argon Detectors with High Quantum Effciency Photomultiplier Tubes. Phys. Procedia, 37:1113--1121, 2012. [ DOI ]
[142] R. Acciarri et al. Test and Comparison of Photomultiplier Tubes at Liquid Argon Temperature. Phys. Procedia, 37:1087--1094, 2012. [ DOI ]
[143] C. Buck et al. Measuring the (14)C isotope concentration in a liquid organic scintillator at a small-volume setup. Instrum. Exp. Tech., 55:34--37, 2012. [ DOI ]
[144] J. Allison et al. Geant4 electromagnetic physics for high statistic simulation of LHC experiments. J. Phys. Conf. Ser., 396:022013, 2012. [ DOI ]
[145] M. Agostini et al. Procurement, production and testing of BEGe detectors depleted in 76Ge. Nucl. Phys. B Proc. Suppl., 229-232:489--489, 2012. [ DOI ]
[146] C. Cattadori, M. Knapp, K. Kroninger, X. Liu, L. Pandola, A. Pullia, C. Tomei, C. Ur, and F. Zocca. Search for the neutrinoless ββ decay in 76Ge with the GERDA experiment. Nucl. Phys. B Proc. Suppl., 221:382, 2011. [ DOI ]
[147] M. Agostini, L. Pandola, and P. Zavarise. Off-line data processing and analysis for the GERDA experiment. J. Phys. Conf. Ser., 368:012047, 2012. [ DOI | arXiv ]
[148] M. Agostini et al. The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments. J. Phys. Conf. Ser., 375:042027, 2012. [ DOI | arXiv ]
[149] P. Zavarise, M. Agostini, A. A. Machado, L. Pandola, and O. Volynets. Off-line data quality monitoring for the GERDA experiment. J. Phys. Conf. Ser., 375:042028, 2012. [ DOI | arXiv ]
[150] R. Acciarri et al. Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature. JINST, 7:P01016, 2012. [ DOI | arXiv ]
[151] M. Agostini, L. Pandola, P. Zavarise, and O. Volynets. GELATIO: A General framework for modular digital analysis of high-purity Ge detector signals. JINST, 6:P08013, 2011. [ DOI | arXiv ]
[152] L. Pandola. Overview of the European Underground Facilities. AIP Conf. Proc., 1338:12--19, 2011. [ DOI | arXiv ]
[153] R. Acciarri et al. The WArP experiment. J. Phys. Conf. Ser., 308:012005, 2011. [ DOI ]
[154] Alfredo G. Cocco et al. First physics results from WARP 2.3 litre prototype. Nucl. Phys. B Proc. Suppl., 221:53--56, 2011. [ DOI ]
[155] M. Agostini, C. A. Ur, D. Budjas, E. Bellotti, R. Brugnera, C. M. Cattadori, A. di Vacri, A. Garfagnini, L. Pandola, and S. Schonert. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76. JINST, 6:P03005, 2011. [ DOI | arXiv ]
[156] M. Agostini, E. Bellotti, R. Brugnera, C. M. Cattadori, A. D'Andragora, A. di Vacri, A. Garfagnini, M. Laubenstein, L. Pandola, and C. A. Ur. Characterization of a broad energy germanium detector and application to neutrinoless double beta decay search in 76Ge. JINST, 6:P04005, 2011. [ DOI | arXiv ]
[157] Melissa Boswell et al. MaGe-a Geant4-based Monte Carlo Application Framework for Low-background Germanium Experiments. IEEE Trans. Nucl. Sci., 58:1212--1220, 2011. [ DOI | arXiv ]
[158] R. Acciarri et al. The WArP experiment. J. Phys. Conf. Ser., 203:012006, 2010. [ DOI ]
[159] G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang. Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds. Nucl. Instrum. Meth. A, 618:315--322, 2010. [ DOI ]
[160] Eugenio Coccia, Luciano Pandola, Nicolao Fornengo, and Roberto Aloisio, editors. Proceedings, 11th International Conference on Topics in astroparticle and underground physics in Memory of Julio Morales (TAUP 2009): Rome, Italy, July 1-5, 2009, 2010.
[161] R. Acciarri et al. Effects of Nitrogen and Oxygen contamination in liquid Argon. Nucl. Phys. B Proc. Suppl., 197:70--73, 2009. [ DOI ]
[162] Alessio D'Andragora et al. Spectroscopic performances of the GERDA cryogenic Charge Sensitive Amplifier based on JFET-CMOS ASIC, coupled to germanium detectors. In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference, pages 396--400, 2009. [ DOI ]
[163] Assunta di Vacri, Matteo Agostini, Enrico Bellotti, Carla M. Cattadori, Alessio D'Andragora, Alberto Garfagnini, Matthias Laubenstein, Luciano Pandola, and Calin A. Ur. Characterization of broad energy germanium detector (BEGe) as a candidate for the GERDA experiment. In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference, pages 1761--1767, 2009. [ DOI ]
[164] Francesco Longo, Luciano Pandola, and Maria Grazia Pia. New Geant4 developments for doppler broadening simulation in Compton scattering - development of charge transfer simulation models in Geant4. In 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, pages 2865--2868, 2008. [ DOI ]
[165] R. Acciarri et al. Effects of Nitrogen contamination in liquid Argon. JINST, 5:P06003, 2010. [ DOI | arXiv ]
[166] R. Acciarri et al. Oxygen contamination in liquid Argon: Combined effects on ionization electron charge and scintillation light. JINST, 5:P05003, 2010. [ DOI | arXiv ]
[167] Yuen-Dat Chan et al. MaGe - a Geant4-based Monte Carlo framework for low-background experiments. 2 2008. [ arXiv ]
[168] V. A. Kudryavtsev, L. Pandola, and V. Tomasello. Neutron- and muon-induced background in underground physics experiments. Eur. Phys. J. A, 36:171--180, 2008. [ DOI | arXiv ]
[169] Giuliana Fiorillo et al. The WArP dark matter search. PoS, IDM2008:016, 2008. [ DOI ]
[170] D. Acosta-Kane et al. Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors. Nucl. Instrum. Meth. A, 587:46--51, 2008. [ DOI | arXiv ]
[171] L. Pandola. Muon-induced signals and isotope production in the GERDA experiment. AIP Conf. Proc., 897(1):105--110, 2007. [ DOI ]
[172] K. Kroninger, L. Pandola, and V. Tretyak. Feasibility study of the observation of the neutrino accompanied double beta-decay of Ge-76 to the 0+(1) excited state of Se-76 using segmented germanium detectors. Ukr. J. Phys., 52:1036--1044, 2007. [ arXiv ]
[173] P. Benetti et al. First results from a Dark Matter search with liquid Argon at 87 K in the Gran Sasso Underground Laboratory. Astropart. Phys., 28:495--507, 2008. [ DOI | arXiv ]
[174] L. Pandola, M. Bauer, K. Kroninger, X. Liu, C. Tomei, S. Belogurov, D. Franco, A. Klimenko, and M. Knapp. Monte Carlo evaluation of the muon-induced background in the GERDA double beta decay experiment. Nucl. Instrum. Meth. A, 570:149--158, 2007. [ DOI ]
[175] I. Abt, Michael F. Altmann, A. Caldwell, K. Kroninger, X. Liu, B. Majorovits, L. Pandola, and C. Tomei. Background reduction in neutrinoless double beta decay experiments using segmented detectors: A Monte Carlo study for the GERDA setup. Nucl. Instrum. Meth. A, 570:479--486, 2007. [ DOI ]
[176] C. Cattadori, O. Chkvorets, C. Tomei, M. Junker, L. Pandola, K. Kroninger, A. Pullia, F. Zocca, V. Re, and C. Ur. The GERmanium Detector Array read-out: Status and developments. Nucl. Instrum. Meth. A, 572:479--480, 2007. [ DOI ]
[177] L. Pandola and C. Tomei. GERDA, a GERmanium Detector Array for the search for neutrinoless beta beta decay in Ge-76. AIP Conf. Proc., 842(1):843--845, 2006. [ DOI ]
[178] P. Benetti et al. Measurement of the specific activity of ar-39 in natural argon. Nucl. Instrum. Meth. A, 574:83--88, 2007. [ DOI | arXiv ]
[179] John Allison et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53:270, 2006. [ DOI ]
[180] K. Amako et al. Geant4 and its validation. Nucl. Phys. B Proc. Suppl., 150:44--49, 2006. [ DOI ]
[181] M. Bauer et al. MaGe: A Monte Carlo framework for the Gerda and Majorana double beta decay experiments. J. Phys. Conf. Ser., 39:362, 2006. [ DOI ]
[182] A. M. Szelc et al. The current status of the WARP experiment. Acta Phys. Polon. B, 37:1997--2004, 2006.
[183] Stefan Schonert et al. Status of the Germanium Detector Array (GERDA) in the search of neutrinoless beta beta decays of Ge-76 at LNGS. Phys. Atom. Nucl., 69:2101--2108, 2006. [ DOI ]
[184] C. M. Cattadori, M. De Deo, M. Laubenstein, L. Pandola, and V. I. Tretyak. Beta decay of In-115 to the first excited level of Sn-115: Potential outcome for neutrino mass. Phys. Atom. Nucl., 70:127--132, 2007. [ DOI | arXiv ]
[185] J. N. Abdurashitov et al. The SAGE and LNGS experiment: Measurement of solar neutrinos at LNGS using gallium from SAGE. Astropart. Phys., 25:349--354, 2006. [ DOI | arXiv ]
[186] K. Amako et al. Comparison of Geant4 electromagnetic physics models against the NIST reference data. IEEE Trans. Nucl. Sci., 52:910--918, 2005. [ DOI ]
[187] M. Altmann et al. Complete results for five years of GNO solar neutrino observations. Phys. Lett. B, 616:174--190, 2005. [ DOI | arXiv ]
[188] C. Cattadori, N. Ferrari, and L. Pandola. Results from radiochemical experiments with main emphasis on the gallium ones. Nucl. Phys. B Proc. Suppl., 143:3--12, 2005. [ DOI ]
[189] Stefan Schonert et al. The GERmanium Detector Array (GERDA) for the search of neutrinoless beta beta decays of Ge-76 at LNGS. Nucl. Phys. B Proc. Suppl., 145:242--245, 2005. [ DOI ]
[190] P. Belli, C. Cattadori, R. Cerulli, S. d'Angelo, N. Ferrari, and L. Pandola. Response of low-noise miniaturized proportional counters in the keV region. Nucl. Instrum. Meth. A, 541:566--573, 2005. [ DOI ]
[191] L. Pandola. Measurement of the solar neutrino interaction rate on 71Ga with the radiochemical experiment GNO at Laboratori Nazionali del Gran Sasso. PhD thesis, L'Aquila U., 2005.
[192] N. Ferrari, J. C. Lanfranchi, and L. Pandola. The GNO experiment. Nucl. Phys. B Proc. Suppl., 143:560--560, 2005. [ DOI ]
[193] I. Barabanov et al. Results of the LENS pilot experiment at Gran Sasso. Nucl. Phys. B Proc. Suppl., 143:559--559, 2005. [ DOI ]
[194] C. M. Cattadori, M. De Deo, M. Laubenstein, L. Pandola, and V. I. Tretyak. Observation of beta decay of In-115 to the first excited level of Sn-115. Nucl. Phys. A, 748:333--347, 2005. [ DOI | arXiv ]
[195] L. Pandola. Search for time modulations in the Gallex / GNO solar neutrino data. Astropart. Phys., 22:219--226, 2004. [ DOI | arXiv ]
[196] F. Ardellier et al. Letter of intent for Double-CHOOZ: A Search for the mixing angle theta(13). 5 2004. [ arXiv ]
[197] I. Abt et al. A New Ge76 Double Beta Decay Experiment at LNGS: Letter of Intent. 3 2004. [ arXiv ]
[198] L. Pandola, C. Cattadori, and N. Ferrari. Neural network pulse shape analysis for proportional counters events. Nucl. Instrum. Meth. A, 522:521--528, 2004. [ DOI ]
[199] S. Chauvie et al. Geant4 low energy electromagnetic physics. In 2004 IEEE Nuclear Science Symposium and Medical Imaging Conference, number 3, pages 1881--1885, 2004. [ DOI ]
[200] F. James et al. Code-Testing of Statistical Test Implementations. eConf, C030908:MOET004, 2003.

This file was generated by bibtex2html 1.99.

VIEW THE COURSES FROM THE A.Y. 2022/2023 TO THE PRESENT

Academic Year 2020/2021

The scientific activity at Laboratori Nazionali del Gran Sasso and at Laboratori Nazionali del Sud of INFN spanned over different physics topics, mostly within the "Astroparticle Physics" activities of the INFN Commissione Scientifica Nazionale 2. Specifically: measurement of solar neutrinos; serch for neutrinoless ββ decay and ancillary measurements (e.g. nuclear matrix elements), dark matter searches, "low-background techniques" for rare event searches.

The primary activity carried on during the last few years was the experiment GERDA (GERmanium Detector Array) at LNGS, searching for neutrinoless ββ decay of 76Ge. Key contributions were given to software, Monte Carlo simulations and offline data analysis. The other current primary activity is the ReD project, within the DarkSide Collaboration, which aims to characterize the response of a double-phase liquid-argon Time Projection Chamber to neutron-induced nuclear recoils. As for GERDA, the most relevant original contributions refer to Monte Carlo simulations, data handling and offline analysis. In addition to the experimental activities, a significant contribution is being given to the Geant4 simulation toolkit, with a special focus to the physics models for the description of electromagnetic interactions at low energy (< 1 MeV). He is also participating to the NUMEN project at LNS, aiming to measure nuclear matrix elements of interest for neutrinoless ββ searches. The role in NUMEN, in addition to the "bridging" between the Nuclear Physics community at LNS and the neutrinoless ββ decay community, is focused to software and computing topics (data handling, software for offline data analysis, Monte Carlo simulations).

The expertise which was earned during almost 18 years of activity within INFN includes:

  1. development of software frameworks for the analysis of data collected in a variety of experiments and with different kinds of detectors: gas proportional counters, semiconductor detectors (HPGe and Si), scintillation detectors, noble liquid (single-phase and double-phase) detectors, readout  with photomultipliers and SiPMs;
  2. offline data analysis of experimental data: pulse shape analysis of digitized traces; event selection and reconstruction; final statistical analysis, also with specific techniques appropriate for low-statistics cases;
  3. Monte Carlo simulation for the assessment of background sources, especially in the framework of rare event experiments (background from α/β/γ radioactivity, neutron background, background induced by cosmic-ray muons); Monte Carlo simulation for the design optimization and for the minimization of background in experiment of interest of INFN; Monte Carlo simulations specific to support data analysis;
  4. development of Monte Carlo applications with Geant4, and validation for different physics domains, including rare-event searches and medical physics.

GERDA The most relevant scientific contribution is given to the data analysis of the GERDA experiment. The responsibility as the "Analysis Coordinator" of the GERDA Collaboration (2011-2017) brought a critical role in core activities, as the monitoring of the data taking, the unblinding, and the final data analysis, for both Phase I (2011-2013) and Phase II (2015-2019). The experiment results have produced one publication on Nature (2017), one on Science (2019) and three on Physical Review Letters (2013, 2018 and 2020).
ReD  The "L1" responsibility of ReD, taken in 2019, came with an intense experimental and logistic activity, aimed for the preparation and the completion of the first ReD measurement with a neutron beam at LNS, which took place in February 2020. The ReD beam run measurement was tailored to the detection of a possible directional sensitivity of a argon-based dual-phase Time Projection Chamber (TPC) for nuclear recoils. The beam run had been preceded by a long and detailed campaing of commissioning and characterization the TPC, which features an innovative readout based on cryogenic SiPM; the results of the campaign have been published on Eur. Phys. J. (2021).  After the completion of the ReD beam measurement, the setup has been relocated to the INFN Sezione di Catania for the next phase of the ReD experimental programme: this is tailored to the characterization of the TPC response for very low energy (a few keV) nuclear recoils. The measurement employs a  252Cf fission neutron source and it is currently in data-taking phase.
NUMEN  The activity within the NUMEN Collaboration, for the measurement of nuclear matrix elements of interest for neutrinoless ββ decay encompasses the following topics: offline computing and data handling; design, development and validation of a new software framework for the offline data analysis; Monte Carlo simulation for the design and optimization of the new Focal Plane Detector (tracker and PID-wall). 
Geant4 A key contribution is given to the development, coordination, validation and dissemination within the Geant4 Collaboration. The membership in the Geant4 Steering Board implies the participation and the sharing of the long-term strategy for the project. This activity includes the validation of the Geant4 physics models, especially concerning low-energy electromagnetic physics and the application in the domain of medical physics and radiation therapy.

The research activity is complemented by teaching activity within PhD courses (Gran Sasso Science Institute and University of Catania) and by dissemination activity at national and international level, especially on Monte Carlo simulations.