TEORIA DEI SISTEMI A MOLTI CORPI

Anno accademico 2016/2017 - 2° anno - Curriculum FISICA TEORICA
Docente: G. G. N. ANGILELLA
Crediti: 6
SSD: FIS/03 - FISICA DELLA MATERIA
Organizzazione didattica: 150 ore d'impegno totale, 102 di studio individuale, 48 di lezione frontale
Semestre:

Obiettivi formativi

Il corso fornisce concetti e tecniche relativi a sistemi di molte particelle a bassa energia, cioè al limite non-relativistico. Vengono trattati con maggiore dettaglio alcuni modelli di interesse per la fisica della materia condensata e dello stato solido.


Prerequisiti richiesti

Il corso richiede conoscenze di meccanica quantistica di base, analisi complessa, termodinamica, meccanica statistica, struttura della materia.


Frequenza lezioni

Fortemente consigliata.


Contenuti del corso

Seconda quantizzazione. Particelle identiche. Bosoni e fermioni. Spazio di Fock. Operatori di creazione e annichilazione. Operatori di campo. Esempi: energia cinetica, spin, densità, corrente, interazione Coulombiana. Oscillatore armonico e campo elettromagnetico in seconda quantizzazione: fotoni. Gas elettronico degenere. Fononi. Interazione elettrone-fonone.

Funzioni di Green a temperatura nulla. Dipendenza dal tempo: rappresentazioni di Schrödinger, Heisenberg e di interazione. Ordinamento temporale. Teorema di Gell-Mann--Low. Significato fisico della funzione di Green. Funzioni di Green per fermioni a T=0. Particelle e buche. Rappresentazione di Lehmann. Funzioni di Green ritardate e avanzate. Causalità e relazioni di dispersione. Teorema di Wick.

Teoria delle perturbazioni. Interazione a due corpi. Diagrammi di Feynman. Teorema di Goldstone. Self-energia. Equazione di Dyson. Approssimazione di Hartree e di Hartree-Fock. Rinormalizzazione: concetto di quasiparticella. Basi microscopiche della teoria di Landau dei liquidi di Fermi. Polarizzazione e funzione di correlazione densità-densità. Random Phase Approximation.

Teoria della risposta lineare. Formule di Kubo e correlazioni. Impurezza isolata in un gas elettronico degenere: effetto schermo. Funzione dielettrica e funzione di Lindhard. Oscillazioni di Friedel. Plasmoni. Plasmoni in sistemi a ridotta dimensionalità.


Testi di riferimento

A. L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Systems, Dover (2003).

H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics, Oxford University Press (2004).

A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover (1975).

Ch. P. Enz, Many-Body Theory Applied to Solid-State Theory, World Scientific (1998).

G. D. Mahan, Many-Particle Physics, Plenum Press (1990).

J. W. Negele, H. Orland, Quantum Many-Particle Systems, Addison-Wesley (1988).

N. H. March, W. H. Young, S. Sampanthar, The Many-Body Problem in Quantum Mechanics, Dover (1995).


Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Prova orale, su argomento inerente al corso e di interesse per lo studente (ad es., per l'attività di tesi magistrale), da concordare preventivamente col docente.